
Optimal Online Frequency Capping Allocation using the Weight

Approach

Martin Zinkevich

October 29, 2010

Abstract

In this document, we present a simple approach for serving guaranteed delivery contracts with fre-
quency capping which we call the weight method, which is optimal when targeting is user-dependent, as
well as when there is no frequency caps. This methodology can also serve as a heuristic for more general
problems. The method is consistent, in that the booking and planning methods work by simulating the
ad server, and therefore, modulo issues of forecasting, the system will be consistent.

1 Introduction

Suppose that you have a website where a million users visit daily. Some visit once, some visit twenty times.
In general, it is difficult to determine who will visit how many times. However, predicting what fraction
of users will visit a certain number of times in a time period is easier. In this paper, we come up with
algorithms where, given an accurate prediction of aggregate behavior, can come up with an optimal plan for
advertising, even in the presence of frequency capping.

In online advertising, publishers sell opportunities to place advertisements on their websites to advertisers.
Usually this is done in the context of a contract. For a non-guaranteed contract, the advertiser might pay
on a per-impression basis, or it may pay each time a user clicks on an advertisement, or for some other
related event. In this paper, we focus on guaranteed delivery, where the advisor pays in advance for a certain
number of impressions.

There are several issues that publishers must deal with to sell guaranteed delivery contracts. The first is
that they must predict the number of opportunities they will have to sell in the future (forecasting). The
second is that they must determine the value of these opportunities and the prices for contracts (booking).
Finally, they must match the opportunities to advertisers when the opportunities arrive (serving).

Guaranteed delivery is made more complicated by two factors. The first is that there is an inherent
stochasticity to the contracts, in that both parties realize that there is a chance that the contract may not
be satisfied, mostly due to the difficulties in forecasting. We do not deal with this issue in this paper, but
mention some open problems in the conclusion. The second is that not all advertisers are interested in all
opportunities.

1. User Segment targeting: They may be interested only in certain users (selling razors to men, spring
break vacations to college students, et cetera).

2. Property targeting: They may only want to advertise next to a subset of the user’s publications
(advertising TMZ next to the gossip column, football tickets near a sports column).

3. Frequency capping: They may wish to limit the exposure of a user to an advertisement (show a
user an advertisement no more than three times a day).

There has been a lot of research into serving impressions with property targeting [FIMN08, VVS10,
DCMCS10], and some research into frequency capping [Far09], but there is no universal method that ad-
dresses both. In this paper, we explain a method that can address either optimally, and heuristically, it may
address both.

1



The basic idea revolves around assigning each campaign a weight. Whenever an opportunity to serve
an ad arises, we first determine which campaigns are interested (the opportunity meets any user segment,
property, and frequency capping constraints the campaign has) in the advertisement. Then, we randomly
select an advertisement to show, with the probability of selecting each advertisement being proportional to
the weight of the advertisement. Note that unlike in [Far09], by definition we never violate frequency capping
conditions.1 However, this only describes the serving algorithm. There are several other aspects.

1. WeightedBooking: An algorithm for deciding how many impressions a new contract can be given,
and at what price.

2. WeightedPlanning: An algorithm for deciding how to determine the weights for contracts, modify-
ing them if necessary.

3. WeightedServing: An algorithm for choosing which contract to match an opportunity to, live.

WeightedServing has been described in loose terms above. However, by design, it is not hard to
understand or implement. What is more difficult is deciding on the weights, given a specific booking. We
present an algorithm below that can not only guarantee ε-optimal allocations in a variety of scenarios, but
the allocations can be obtained efficiently. WeightedPlanning is also easy to implement, though it is
nontrivial to prove it is correct. For each contract c ∈ C, define wc to be its weight, and bc to be the number
of booked impressions.

Algorithm 1 A method to find contract weights

Require: A simulator, and padding ε > 0
Ensure: The weights, wc, for all contracts c are set appropriately

Initialize wc ← 1 for all contracts c
Simulate serving to get ec for all c ∈ C, where ec is an estimate of how many impressions are obtained by
contract c given the weights w
while ec < bc for some c do

// Update the weights
for contract c ∈ C where ec ≤ bc do
wc ← wc × (1 + ε)wcbc/ec

end for
Simulate serving to get ec for all c ∈ C, where ec is an estimate of how many impressions are obtained
by contract c given the weights w

end while

There are a variety of ways to design a WeightedBooking algorithm. The best approach is to run a
traditional linear programming technique [YT08], increasing the requirements on each contract by a small
multiplicative factor (see Section 5). There is some literature on solving the problem without frequency
capping using linear programming. In Section 5.3, we discuss the linear program when there are frequency
cap constraints.

In cases where a linear programming cannot represent all the constraints, we can try to get a rough idea
of the maximum amount that can be booked, and then confirm the feasibility using the WeightedPlan-
ning algorithm directly.

The greatest thing about this method is that, when there exists a linear programming technique for
booking, it is perfectly synchronized. The planning algorithm simulates the serving, and the booking provides
guarantees for the planning. Therefore, barring errors in forecasting, the contracts will get the right number
of impressions. The second thing that is wonderful is that this method is guaranteed to work on a wider
variety of contracts than systems developed in the past: in particular, it can handle daily frequency capping

1Of course, this does assume we can maintain counts for each user and contract pair. If we have multiple HTTP servers
that are geographically disparate, this is nontrivial and may lead to a few violations if users do not always connect to the same
machine.

2



and user segment targeting contracts so long as there is no property targeting, and it can handle user
segment targeting and property targeting contracts so long as there is no frequency capping. Next, we go
through some examples that show the power of the technique. Then, we go into some theoretical work that
demonstrates that the algorithm works. Finally, we conclude.

2 Examples of WeightedServing and WeightedPlanning

Let us begin with a few examples.

Example 1 There are one million opportunities, and two contracts. Contract A requires 900,000 impres-
sions, and Contract B requires 50,000 impressions.

To correctly serve these impressions, 9 ≤ wA/wB ≤ 19.
As we run WeightedPlanning, we set ε = 0.01, then initially set wA = wB = 1, so we estimate contract

A gets 500,000 impressions, and contract B gets 500,000 impressions. After one iteration, wA = 1.818,
wB = 1. Now, A gets 645,000 impressions, and B gets 465,000. Asymptotically, until eA ≥ bA, wA will
increase by a factor of at least 1.01, and wB will stay at 1. After a few iterations, there will be sufficient
impressions for A. Note that even if we increased wA only by a factor of 1.01, it would still eventually reach
9. However, it would take more iterations.

Example 2 The are one million opportunities, and three contracts. Contract A requires 900,000 impres-
sions, Contract B requires 90,000 impressions, and Contract C requires 9,000 impressions.

As we run WeightedPlanning, we set ε = 0.005, then first wA will increase until it has a sufficient
number of impressions. At some point, it will take too many impressions away from contract B, and wB will
increase as well. At iteration 132, the system stabilizes.

Example 3 There are one million users visiting twice in a day, and three contracts with frequency cap of 1.
Contract A requires 900,000 impressions, Contract B requires 600,000 impressions, and Contract C requires
300,000 impressions.

Here, the same behavior occurs. Contract A increases its weight until wA/(wB+wC) is greater than (roughly)
9, and wB increases its weight until wB/wC is greater than 2. Note that it is not enough that wA is twice
as large as wB + wC .

WeightedPlanning is based on a few intuitions.

1. There is a solution to the problem via weights.

2. On every iteration, some weight increases by a factor of at least (1 + ε).

3. As the weight of contract B increases, the number of impressions for contract A does not increase.

4. As the weight of contract A increases by a factor of k, the number of impressions increases by less than
a factor of k.

These intuitions allow us to approach the correct weights “from below,” and they hold if there is no frequency
capping. They also hold if there is daily frequency capping, but no property targeting. However, there are
counterexamples where it does not hold if there is frequency capping and property targeting. The fourth
constraint is so that we can accelerate the process when we are severely underdelivering. We revisit this
fourth constraint later to produce a faster (if slightly more complicated) algorithm.

There are examples where these constraints do not hold.

Example 4 There are one million users visiting twice in a day, once on the home page and once on a sports
article. Contract A requires 900,000 impressions from anywhere, Contract B requires 400,000 impressions
from the home page, and Contract C requires 400,000 impressions from sports. Each contract has a frequency
cap of 1.

3



Here, increasing the weight of contract A can increase the impressions of contract C. Effectively, when
you increase the weight of contract A such that wA > wB , then contract A gets over half of the home page
impressions, such that when those users come to the sports page, they cannot see another impression from
contract A. For example, if you have wA = wB = wC = 1, then C gets 750,000 impressions. However, if you
set wA = 10, then C gets over 900,000 impressions.

Even in this example, the algorithm does find the solution. In particular, C always receives enough
impressions, so its weight is fixed at one. On the other hand, the weights of wA and wB both increase until
wA gets almost half of the impressions in sports and on the home page.

Example 5 There are one million users who visit twice a day. Half view a sports article, then a finance
article. Half visit the home page, then an auto article. Contract A is targeting the home page, sports, and
finance. Contract B is targeting the home page, sports, and auto. Each requires 900,000 impressions, and
has a frequency cap of 1.

In this example, ideally one would sell all home page and sports opportunities to contract A, and sell all
finance and auto to contract B. Note that this cannot be accomplished with weights.

The problem is that past experience can be used to predict future behavior. However, even if visits on
pages were independent, you would still run into problems.

Example 6 People randomly visit the home page, a sports article, or a finance article, with a 1/3rd proba-
bility of leaving after every visit. Contract A is targeting the sports article and the home page, and Contract
B is targeting the finance article and the home page. Each is interested in an equal number of impressions
and has a frequency cap of 2.

In this case, if you a user has seen one ad from Contract A and is visiting the home page, you should
show him an ad from Contract B. Similarly, if a user has seen one ad from Contract B and is visiting the
home page, you should show him an ad from Contract A. This relationship is impossible to capture with
weights.

Thus, there are technical limitations to the number of impressions that can be obtained using weight
allocations. These are not limited to weights, but any time that the distribution over the ad shown is a
monotonic function of the values of the applicable ads. Extending the technique to resolve these problems
is an interesting area of future work.

As a final point, there is no known example where there exists a set of weights that solve a problem (and
there is some slack), and yet the WeightPlanning algorithm does not find them.

3 Formalisms

The most complex element of this algorithm is the model we use for predicting the expected number of
impressions given a set of weights. For simplicity, we assume C = {1 . . . n}. Formally, a model is a function
A : (R+)n → (R+)n.

Definition 7 A model A is well-behaved if for any v ∈ (R+)n, and any α ≥ 1, any i ∈ {1, . . . , n}, and
w ∈ (R+)n where wj = vj if j 6= i and wi = αvi:

1. for all j 6= i, Aj(w) ≤ Aj(v),

2. Ai(v) ≤ Ai(w),

3. Ai(w) ≤ αAj(v),

4. Ai(αv) = Ai(v),

For any x, y ∈ Rn, x ≥ y if and only if for all i, xi ≥ yi.

4



Definition 8 Given weights w ∈ (R+)n, a booking bi for each contract, such that b ∈ (R+)n, and a model
A, if A(w) ≥ b, then w satisfies b. b is satisfiable with weights if there exists an w′ ∈ (R+)n such that
w′ satisfies b. If (1 + ε)b is satisfiable, then b is ε-oversatisfiable with weights.

Note, that the above definition explicitly states a solution in terms of weights. In later parts, we connect
satisfiability in terms of weights to satisfiability in terms of Hall’s Theorem.

The main theorem we state below:

Theorem 9 Given a well-behaved model A and a booking b which is ε-oversatisfiable with weights, if the
algorithm runs with ε′ < ε, the algorithm terminates and returns a w satisfying b.

Proof: First, since b is over-satisfiable, there exists a w′ ∈ (R+)n such that A(w′) ≥ b(1+ε). Next, we scale
the vector such that the lowest element is one, i.e.we define w = (mini w

′
i)
−1w′. Because A is well-behaved

(4), A(w) = A(w′) ≥ b(1 + ε). The rest of the proof is in two parts: in the first part we establish recursively
that w ≤ w throughout the algorithm. Define Φ(w) = 1

log(1+ε)

∑n
i=1 logwi − logwi. Note that by the first

part, Φ(w) ≥ 0. In the second part we will show that Φ decreases by at least one in every iteration.
Part 1: w ≤ w: Observe that w ≤ w initially, because by definition mini wi = 1. Consider a single

iteration of the algorithm. Define winitial to be the initial value of w during the iteration, and wfinal to be
the final value of w. If for some i, wfinal

i 6= winitial
i , then wfinal

i = winitial
i (1 + ε′)bi/ei. Define whybrid such

that whybrid
i = wfinal

i and for all j 6= i, whybrid
j = wfinal

j . Because A is well behaved (3), Ai(w
hybrid) ≤

(1 + ε′)(bi/ei)Ai(w
initial). Since ei = Ai(w

initial), Ai(w
hybrid) ≤ (1 + ε′)bi. Define whybrid2 ∈ (R+)n such that

whybrid2
i = whybrid

i and for all j 6= i, whybrid2
j = wj . Because A is well-behaved (1),

Ai(w
hybrid2) ≤ Ai(whybrid) ≤ (1 + ε′)bi < (1 + ε)bi ≤ Ai(w). (1)

Note that if whybrid2
i ≥ wi, then whybrid ≥ w, and because A is well-behaved (2), Ai(w

hybrid2) ≥ Ai(w) (a

contradiction to Equation 1). So wi ≤ whybrid2
i = whybrid

i = wfinal
i , so by induction, wfinal ≤ w.

Part 2: Φ(w) decreases by at least 1 every iteraton: If the algorithm does not terminate, then
there is at least one i ∈ {1, . . . , n} where wi is changed. If wi is increased, then ei < bi, implying wfinal

i =
winitial
i (1 + ε)bi/ei ≥ (1 + ε)winitial. Also, note that winitial ≤ wfinal. Thus,

Φ(winitial)− Φ(wfinal) =
1

log(1 + ε)

n∑
j=1

logwfinal
j − logwinitial

j (2)

Φ(winitial)− Φ(wfinal) ≥ 1

log(1 + ε)
logwfinal

i − logwinitial
i (3)

Φ(winitial)− Φ(wfinal) ≥ 1

log(1 + ε)
log(wfinal

i /winitial
i ) (4)

Φ(winitial)− Φ(wfinal) ≥ 1

log(1 + ε)
log(1 + ε) (5)

Φ(winitial)− Φ(wfinal) ≥ 1 (6)

Thus, on every step, Φ decreases by 1. Since from Part 1, w < w, Φ(w) ≥ 0, so after Φ(1) steps, the
algorithm must converge. By substitution, this is b

∑
i log1+ε wic steps.

Therefore, for certain constraints on the model, the algorithm terminates. Moreover, the number of steps
required is logarithmic in the magnitude of the weights. What we need to establish is that many models of
interest (e.g., property targeting without frequency capping, frequency capping without property targeting),
are well-behaved.

However, before diving into all the formalisms of guaranteed delivery, we present a very simple, very
powerful lemma that allows us to decompose seemingly intractable problems into simple ones. First, we
present the traditional definition of addition in function space.

5



Definition 10 Given A,A1, A2 : (R+)n → (R+)n (such that they are functions from (R+)n to (R+)n), if
for all w ∈ (R+)n, A(w) = A1(w) +A2(w), we say that A = A1 +A2.

Theorem 11 If A = A1 +A2, and A1 and A2 are well-behaved, then A is well-behaved.

Corollary 12 If A =
∑n
i=1Ai, and for all i, Ai is well-behaved, then A is well-behaved.

Proof: The theorem follows directly from the definition of well-behaved, and the corollary follows from
recursion.

4 Models of Serving

A model of opportunities can be characterized by several parameters. In this work, we consider only daily
frequency caps. First, we have a set of opportunities O. Each opportunity occurs on a given day and is from
a given user. For every user u and day d, define Fu,d to be the sequence of opportunities arriving for user
u at day d. Then, a contract c can be represented by a set of matching opportunities (Mc ⊆ O), a target
number of impressions (bc), and a frequency cap (fc) which may be infinite.

4.1 Modeling without Frequency Caps

Suppose that there are no frequency caps, or more formally, all the frequency caps are infinite. Then critically,
what contract is served in opportunity o1 is independent of what contract is served in opportunity o2. Thus,
for all o ∈ O we can define Ao, which is the expected number (i.e.probability) of impressions served from
opportunity o to each contract. For simplicity, define Co ⊆ C to be the set of contracts c where o ∈ Mc.
Therefore:

Aoc(w) =

{
wc∑

c′∈Co
wc′

if c ∈ Co
0 otherwise

(7)

In particular, the probability of selecting a matching contract is proportional to its weight. If there is no
frequency capping, then AO,C =

∑
o∈O A

o.

Lemma 13 Ao (from Equation 7) is well-behaved.

Proof: Observe that for a given c, c′ ∈ C where c 6= c′, if wc′ increases, then Aoc decreases or stays the
same (well-behaved property 1), because the denumerator increases or stays the same. If wc increases, then
Aoc increases or stays the same (well-behaved property 3), but because the denominator increases as well, the
allocation increases by a factor smaller than the weight (well-behaved property 2). Since the weights occur
in the numerator and the denominator, scaling them changes nothing (well-behaved property 4). Thus, Ao

is well-behaved.

Theorem 14 If there is no frequency capping, AO,C is well-behaved.

Proof: This follows from Lemma 13 and Theorem 11.

4.2 Modeling With Frequency Caps

For each user-day pair (u, d), there is a expected number of opportunities for each contract Au,d : (R+)n →
(R+)n from that user-day pair. We show in the appendix how we could exactly calculate this value. For the
general model, A(w) =

∑
u,dA

u,d(w). In other words, across users the function is additive.

Definition 15 Given the Fu,d and Mc that underly model A, if for every user-day pair (u, d), for every
contract c ∈ C, either Fu,d ⊆Mc or Fu,d∩Mc = ∅, then the model A has no property targeting. In other
words, a contract either matches every opportunity from a user or none of them.

6



If there is no property targeting, then we can represent Au,d(w) as a function of:

1. the length of Fu,d,

2. the number of matching contracts to an element of Fu,d, and

3. the frequency cap of each matching contract to Fu,d.

4. the weights of the matching contracts.

Define ak to be this function, where k is the length of Fu,d. If we simply put a zero for the frequency cap
of a contract that does not match, and define F = {0, 1, 2 . . .} to be the non-negative integers, we can write
ak : (R+)n × Fn → (R+)n. Formally, there exists k, f , such that for all w ∈ (R+)n, Au,d(w) = ak(w, f).
This derivation is covered in detail in the appendix.

Lemma 16 If for every c ∈ C, either Fu,d ⊆Mc or Fu,d ∩Mc = ∅, then Au,d is well-behaved.

Proof Sketch: We have to prove that akc is well-behaved. First, since weights are always multiplicatively
normalized to determine allocation, scaling does not impact allocation.

With clever accounting one can prove that increasing the weight of c does not decrease the number of
impressions to c. The key insight is that decreasing the frequency cap of c by 1 and increasing the frequency
cap of c′ by one does not affect the number of impressions to c by more than 1 per user. Thus, recursively one
can argue that serving a c instead of a c′ at the first opportunity is not overshadowed by the consequences
when the user continues to visit with the current number of impressions remaining modified.

A similar recursive argument can be used to argue that the number of impressions to c is not too high after
the weight of c has been adjusted. This is another recursive argument, leveraging the fact that decreasing
the frequency cap of c and increasing the frequency cap of c′ does not increase the number of impressions to
c.

Finally, we must demonstrate that increasing the weight of c does not increase the number of impressions
to c′. This is the trickiest proof, because that while increasing the weight of c implies that c′ will get fewer
impressions at the first opportunity, it also implies that c′′ will receive fewer impressions. Consider the case
where c has a weight of 9 and c′ and c′′ have weights of 1, each contract has a frequency cap of 1, and the
user visits twice. Then, if we just tweaked the first impression, giving it to c instead of c′′, then this would
actually increase the probability that c will get the second impression from 10% to 90%. However, we can
prove that this increase is offset by decreases elsewhere, by providing a direct mapping between opportunities
after c gets the first impression and opportunities after c does not get the first impression. This is further
complicated when the frequency cap is higher, as one must map the opportunities when c gets the first n
impressions back to opportunities when c does not get the first impression.

This is proven in detail in the appendix.

5 Hall’s Theorem

Hall’s Theorem is often applied to the marriage problem (finding a set of marriages between men and women
matching certain constraints), which can be extended to an arbitrary allocation problem. What we show
here is that it also can be applied to frequency capped contracts.

5.1 Hall’s Theorem without Frequency Capping

For each contract c ∈ C, there is an amount booked bc. For a subset C ′ ⊆ C, define bC′ =
∑
c∈C′ bc. This is

the cumulative booked for C ′. Without frequency capping, we can also define sC′ = |
⋃
c∈C′Mc|, to be the

supply available to C ′. Notice that if Mc and Mc′ intersect, then s{c,c′} ≤ sc + sc′ .
We will now define Hall satisfiability to be the property that there exists M ′c ⊆ Mc such that for all

c, c′ ∈ C, M ′c ∩Mc′ = ∅ and |Mc| ≥ bc. In other words, there exists some way to serve opportunities to
contracts, which may not use weights.

7



We define a problem to be Hall ε-oversatisfiable if in addition to the above constraints, there exists a
solution such that |Oc| ≥ (1 + ε)bc.

Theorem 17 Hall’s TheoremA problem without frequency capping is Hall satisfiable (if and) only if for
all C ′ ⊆ C, bC′ ≤ sC′ .

We parenthesize the if part, because it is the more difficult part to prove and is not required for our purposes

here. It is the more obvious part of Hall’s Theorem that is necessary. Define RC′(w) =
minc∈C′ wc

maxc∈C\C′ wc
to

describe how much larger the weights in C ′ are than C\C ′.

Fact 18 As RC′(w) → ∞,
∑
c∈C′ A

O,C
c (w, f) → sC′ . In other words, as the weights of the contracts in C ′

grows with respect to the contracts in C\C ′, the contracts in C ′ will grab almost all the inventory available
to them.

By virtue of its stopping condition, Algorithm 1 is guaranteed to produce an allocation plan which ensures
every contract meets its demand (in expectation), so long as the algorithm actually stops. In fact, we can
show that it is guaranteed to converge, so long as the demands of all contracts (padded by (1 + 2ε′)) are
feasible. In practice, we can trim the demand of contracts somewhat to ensure feasibility. We sketch the
proof below.

Theorem 19 Without frequency capping, if for some ε > 0, a problem is Hall-ε oversatisfiable, it is satisfi-
able.

Proof: We define ε′ = ε/2. Denote the value of the weights in the t-iteration by w(t). First, suppose that

at any point during the algorithm that AO,Cj (w(t)) ≤ bj(1 + ε′). Then we claim that AO,Cj (w(t′)) ≤ bj(1 + ε′)
for all t′ ≥ t, by an argument similar to that of Part 1 of the proof of Lemma 6.

Now, suppose that the algorithm never halts. For each j, the sequence w
(t)
j for t = 1, 2, ... is increasing

(by the update rule of the algorithm). Hence, if it is bounded above, it must converge. Let C ′ be the set of
j such that the sequence is unbounded. Since the problem is feasible with demands of (1 + 2ε′)bj , and by
Hall’s Theorem,

sC′ ≥ (1 + 2ε′)bC′

Now, since the masses for j ∈ C ′ increase without bound, by Fact 18 there is a point, say t = T , at which
the total delivery for the contracts with unbounded masses will be all but an arbitrarily small fraction of the
total inventory available. Hence, there is some j ∈ C ′ for which

AO,Cj (w(T )) > (1 + ε′)dj

But this contradicts our previous claim— since all of the masses for j ∈ C ′ are updated repeatedly, it must
be the case that AO,Cj < dj(1 + ε′). Hence C ′ must be empty, and the algorithm converges.

5.2 Hall’s Theorem with Frequency Capping

With frequency capping, very odd properties can hold. In particular, even if Oc = Oc′ , the supply available
to {c, c′} can actually be equal to the sum of c and c′. This happens if every user visits twice and fc = fc′ = 1.

A problem is Hall satisfiable with frequency capping if there exists M ′c ⊆Mc where for any c, c′ ∈ C
where c 6= c′, M ′c ∩M ′c′ = ∅, for all c ∈ C, |M ′c| ≥ bi, and for all (u, d), for all c, M ′c ∩ Fu,d ≤ fc. We define
a problem to be Hall ε-oversatisfiable with frequency capping if in addition to the above constraints,
there exists a solution such that |Oc| ≥ (1 + ε)bc.

Consider a set of contracts C ′ ⊆ C. For any user-day pair (u, d), define Cu,d = {c ∈ C : Fu,d ⊆ Mc}.
Define:

sC′ =
∑
u,d

min

|Fu,d|, ∑
c∈C′∩Cu,d

fc

 (8)

8



Therefore, for each user-day pair, if the frequency caps of matching contracts are high enough we can either
serve every impression to a contract in C ′. Alternatively, we are bounded by the sum of the frequency caps.
We can create a Hall’s Theorem for frequency capping.

Theorem 20 A problem with frequency capping without property targeting is Hall satisfiable only if for all
C ′ ⊆ C, bC′ ≤ sC′ .

Proof: The only if part is clear: if trying to serve as many opportunities as possible to C ′ failed to obtain
bC′ opportunities, then there is no way to serve bc opportunities to each contract c ∈ C ′ simultaneously.

While the if part of this Hall’s Theorem is interesting, it goes beyond the scope of this paper.

Fact 21 If there is no property targeting, as RC′(w) → ∞,
∑
c∈C′ A(w, f) → sC′ . In other words, as the

weights of the contracts in C ′ grows with respect to the contracts in C\C ′, the contracts in C ′ will grab almost
all the inventory available to them.

This can be easily seen if one considers an individual contract.

Theorem 22 With frequency capping but without property targeting, if for some ε > 0, a problem is Hall-ε
oversatisfiable, it is satisfiable.

The proof follows the exact same lines as Theorem 19. Because the “only-if” part of Hall’s Theorem is
satisfied by Theorem 20, the planning algorithm is well-behaved by Theorem 16, and Fact 21, the result
holds.

5.3 A Linear Program for Frequency Capping

In [Far09], they discuss how to formulate the problem as a dynamic program. While this approach can be
effective, there is the issue that frequency capping constraints can be violated with some probability using
the solution. Therefore, here we present a solution which in a restricted case, guarantees correct behavior.
There are two possibilities. In one case, we have a distribution over the number users who make a certain
number of visits per day. For each number of visits v, for each user segment s, define qs,v to be the number of
users with that number of visits. Then, for each contract c ∈ C, for each number of visits v, for each segment
s, we define xc,v,s to be the number of impressions from users with that number of visits. We formulate a
linear program for this problem and solve for x:∑

c∈C
xc,v,s ≤ qs,v (9)

xc,v,s ≤ fcqs,v (10)∑
v,s

xc,v,s ≥ bc. (11)

These constraints make certain each contract is satisfied. If c is the new contract and we maximize bc, then
we can see how many impressions we can book to contract c. In some cases, the number of user segments
may become prohibitive, so we can sample them, similar to [VVS10].

6 System Guarantees

Thus, by showing the algorithm is satisfiable in the sense of weights with a small amount of slack, we can
prove that the weights architecture works. First, we can book contracts by solving a constraint optimization
problem. We insist that all the constraints are slack. Define b′ = (1 + ε)b. If the problem with b′ is Hall
ε′-oversatisfiable, then b′ is satisfiable with weights, so b is ε-oversatisfiable with weights.

9



Theorem 23 With frequency capping but without property targeting, or with property targeting but without
frequency capping, given a booking which is ε-oversatisfiable and accurate forecasting:

1. the WeightedPlanning algorithm can generate a plan.

2. the WeightedServing algorithm can for each contract deliver the right number of expected impres-
sions.

3. the WeightedBooking algorithm determining how many impressions can be guaranteed with a certain
ε-oversatisfiability.

Proof: The WeightedPlanningalgorithm’s properties are guaranteed mostly by Theorem 16, Theo-
rem 22, and Theorem for frequency capping, and Theorem 14, Theorem 19, and Theorem 6 for property
targeting. These imply that the plan (the weights) generated by WeightedPlanningwill if applied by
WeightedServingin expectation deliver the right number of impressions to each contract. Finally, because
WeightedPlanningcan handle any Hall ε-oversatisfiable booking, by ensuring that the Hall constraints
are satisfied with inflated booked amounts (which can be done as in [VVS10, DCMCS10], or for frequency
capped contracts as described in Section 5.3, we can guarantee that the overall system will work.

We discuss forecasting and the actual number of impressions served in future work.

7 Heuristic Improvements

Although it is difficult to prove theoretically, intuitively, more aggressive increases of the weights will result
in faster algorithms. To this end, we present a slightly more aggressive update rule. This rule takes into
consideration the fact that a contract competes with its own weight as the weight increases.

Consider Example 1. Here, contract A has a weight wA, and contract B has a weight wB . If B is already
satisfied, we can exactly calculate the right weight for wA based upon the current wA, bA, eA, and a new
variable tA, which is the total number of opportunities available to A when there is no contention.

Note that eA/tA without frequency capping equals wA/(wA + wB), so wB = tA
eA
wA − wA.

Thus, the new w′A should be:

w′A
w′A + wB

=
bA
tA

(12)

w′A

(
1− bA

tA

)
=
bA
tA
wB (13)

w′A

(
1− bA

tA

)
=
bA
tA

(
wA

tA
eA
− wA

)
(14)

w′A = wA

tA
eA
− 1

tA
bA
− 1

(15)

Note that while it is no longer an exact solution if we move to scenarios more complex than Example 1, we
can still apply it. This weight modification will be nearly as fast as w′A = bA

eA
wA. Moreover, you can replace

bA with bA(1 + ε), which will guarantee a (1 + ε) multiplicative increase every iteration.
The downside is that for frequency capped contracts, this estimate is too aggressive. In particular, for

Example 3, the above rule starts to overserve the first contract. A way that this could be mitigated would
be to ignore frequency caps when calculating tc: this will result in underestimates of what wA should be,
but note that as tA →∞, the weight update rule approaches the original weight update rule.

8 Conclusion

In this paper, we have introduced a new method (the weights method) for guaranteed delivery. We have
introduced a new method of serving, planning, and booking that are internally consistent with one another,

10



and which can be integrated with any method of forecasting which supports simulations. Moreover, we have
proven how it can guarantee results in more domains than existing methodologies.

Finally, this method could in practice be used heuristically in cases where there were not guarantees.
There is no known example where there exists a set of weights that solve a problem (and there is some slack),
and yet the WeightPlanning algorithm does not find them. Stating this as a conjecture:

Conjecture 24 If there exists weights w that solve a booking problem with (1 + ε)b, then the algorithm
WeightedServing can resolve that problem.

Two issues we have not resolved is accurate forecasting and the actual number of impressions served. The
actual number of impressions for larger contracts will likely be close to the true expected number, by Chernoff
Bounds. However, forecasting is not as trivial: because the past experience may (or may not) be a good
indication of future performance, it is impossible to directly prove anything about accuracy here without
unreasonable assumptions about the ability to forecast. For example a news site might have a sudden
increase in traffic on a day that something interesting happens. Individuals can also have a dramatic effect
on traffic: for example, the slashdot effect is when a large site references a small site, causing its traffic
to spike to unprecedented levels. Everything from holidays to hurricanes has an effect on traffic. One
interesting approach might be to have a variety of forecasting models, or a distribution over models. Is there
a way to guarantee at booking time that with some (high) probability that we satisfy the contract given our
distribution over models is correct?

As discussed in Section 2, there are technical limitations to the number of impressions that can be
obtained using weight allocations. These are not limited to weights, but any time that the distribution over
the ad shown is a monotonic function of the values of the applicable ads. These could be resolved by having
different weights for different opportunities (which is basically the same as saying different probabilities for
different opportunities), but deriving a new compact representation might be hard. Since these problems
occur with frequency capping and property targeting, natural extensions involve different weights for highly
trafficked properties, or different weights for an ad depending on how many times that ad has been seen
before by that user. As these methods introduce far more complicated planning problems, the most profitable
direction of research is likely in understanding and tuning the WeightPlanning algorithm, leveraging new
empirical and theoretical insights.

References

[DCMCS10] N. Devanur, D. Charles, K. Jain M. Chickering, and M. Sanghi. Fast algorithms for finding
matchings in lopsided bipartite graphs with applications to display ads. In ACM Electronic
Commerce, 2010.

[Far09] Ayman Farahat. Privacy preserving frequency capping in internet banner advertising. In WWW
’09: Proceedings of the 18th international conference on World wide web, pages 1147–1148, New
York, NY, USA, 2009. ACM.

[FIMN08] Ureil Feige, Nicole Immorlica, Vahab Mirrokni, and Hamid Nazerzadeh. A combinatorial al-
location mechanism with penalties for banner advertising. In WWW ’08: Proceeding of the
17th international conference on World Wide Web, pages 169–178, New York, NY, USA, 2008.
ACM.

[VVS10] E. Vee, S. Vassilvitskii, and J. Shanmugasundaram. Optimal online assignment with forecasts.
In ACM Electronic Commerce, 2010.

[YT08] J. Yang and J.A. Tomlin. Advertising inventory allocation based on multi-objective optimiza-
tion. Presented at INFORMS, Washington, DC, October 2008.

11



A Calculating Au,d

Define C∗ to be the set of finite sequences of contracts. Given a sequence h ∈ C∗ and c ∈ C, define:

1. |h| to be the length of the h,

2. hi to be the ith element of h.

3. h(i) is the first i elements of h.

4. count(h, c) =
∑n
i=1 I(hi = c), the number of times c occurred in h.

Similarly, Fu,d is a sequence, with |Fu,d| and Fu,di being defined similarly to the above. However, a cleaner

representation is to define Cu,d ∈ P(C)|F
u,d|, where Cu,di = CFu,d

i
, or in other words, the contracts that

match the ith opportunity in Fu,di . Given the model, we can also define Ch = {c ∈ C : count(h, c) < fc}.
Given this notation, given C ′ ∈ P(C)∗ we can write N(w, h,C ′) =

∑
c∈C′|h|+1

∩Ch
wc, the normalization

constant, and the probability of selecting a campaign c:

pc(w, h,C
′) =

{
wc/N(w, h,C ′) if c ∈ C ′|h|+1 ∩ Ch
0 otherwise

(16)

Note that pc above is not a probability distribution if C ′|h|+1 ∩ Ch = ∅. Therefore, define cx /∈ C to be a

special token such that pcx(w, h,C ′) = 1−
∑
c∈C pc(w, h,C

′). Define Cx = C ∩ {cx}. Thus, the probability

of a history h ∈ Cx|C
′| can be written:

ph(w,C ′) =

|h|∏
i=1

phi
(w, h(i− 1), C ′i) (17)

Now, given the probability of any history, we can define the expected number of impressions served to a
contract:

Au,dc (w) =
∑

h∈Cx
|Cu,d|

ph(w,C ′u,d)count(h, c). (18)

B Frequency Capping Without Property Targeting

Although we can formally define what it means to have no property targeting, when proving things about
this condition it is easiest to simply redefine our model in a way that property targeting is impossible to
represent. In this section, we define akc . We first define it in a way similar to the previous section, but then
we provide an equivalent recursive definition as well. The lemmas in this section are quite straightforward
to prove, but are leveraged throughout the rest of the appendix.

If there is no property targeting, then we can represent Au,d(w) as a function of:

1. the length of Fu,d,

2. the number of matching contracts to an element of Fu,d, and

3. the frequency cap of each matching contract to Fu,d.

4. the weights of the matching contracts.

Define F = {0, 1, 2 . . .} to be the non-negative integers, and we can define ak : (R+)n × Fn → (R+)n such
that akc (w, f ′) = Au,dc (w) if:

1. f ′c′ = max(fc′ , |Fu,d|) if Fu,d ∩Mc′ = Fu,d, and f ′c′ = 0 otherwise.

2. k is the maximum number of impressions that can be shown to user u. This is usually |Fu,d|, the
number of visits of u, but if |Fu,d| >

∑
c′∈C f

′
c′ , it is this latter number.

12



First, we define the probability p of showing an impression:

pc(w, f) =

{
wc∑

{c′:f
c′ 6=0} wc′

if fc > 0

0 otherwise
(19)

Define 1c ∈ Fn such that 1cc = 1, and 1cc′ = 0 for c′ 6= c. For any h ∈ C∗, define 1h such that 1hc = count(h, c).
Then:

ph(w, f) =

|h|∏
i=1

phi
(w, f − 1h(i−1)) (20)

If
∑
c′∈C fc ≥ k, we can define akc as:

akc (w, f) =
∑
h∈Ck

count(h, c)ph(w, f). (21)

Otherwise, we define akc = ajc, where j =
∑
c′∈C fc′ .

Lemma 25 If there is no property targeting, then Au,dc (w) = akc (w, f ′), where f ′c′ = max(fc′ , |Fu,d|) if
Fu,d ∩Mc′ = Fu,d, and f ′c′ = 0 otherwise.

Proof: Note that if
∑
c′∈C fc′ < k, then Au,dc (w) = fc = akc (w, f).

First, we show that ph(w,C ′u,d) = ph(w, f ′) if k = |Fu,d|. First, define C ′′ = C ′u,d1 , and observe that

without property targeting, for all i, C ′′ = C ′u,di . Moreover, observe that f ′c′ = max(f ′c′ , |Fu,d|) if and only
if c′ ∈ C ′′, and f ′c′ = 0 otherwise.

ph(w,C ′u,d) =

|h|∏
i=1

phi
(w, h(i− 1), C ′u,di ) (22)

ph(w,C ′u,d) =

|h|∏
i=1

phi
(w, h(i− 1), C ′′) (23)

There are two cases.

1. If ph(w,C ′u,d) = 0, then there exists a first i such that phi(w, h(i− 1), C ′) = 0. Then, either whi = 0,
in which case phi

(w, f ′ − 1h(i−1)) = 0. Or, hi /∈ C ′′ ∩ Ch(i−1). If hi /∈ C ′′, then f ′hi
= 0 and therefore

phi
(w, f ′ − 1h(i−1)) = 0. If hi ∈ C ′′ and hi /∈ Ch(i−1), then f ′hi

− 1
h(i−1)
hi

= fhi
− 1

h(i−1)
hi

= 0, so

phi
(w, f ′ − 1h(i−1)) = 0. Therefore, phi

(w, f ′ − 1h(i−1)) = 0, and ph(w, f ′) = 0.

2. If ph(w,C ′u,d) 6= 0, then, for any i, ph(w, h(i−1), C ′u,d) > 0, so phi(w, h(i−1), C ′u,d) = whi/N(w, h(i−
1), C ′u,d), hi ∈ C ′′, and hi ∈ Ch(i−1). This means that fhi

> count(h(i − 1), hi), or in other words,

(f ′ − 1h(i−1))hi
> 0. Thus, phi

(w, f ′ − 1h(i−1)) =
whi∑

c′′:(f−1h(i−1))
c′′wc′′

. Note that for all c′′ ∈ C,

(f ′− 1h(i−1))c′′ > 0 if and only if c′′ ∈ C ′′ ∩Ch(i−1), so N(w, h(i− 1), C ′u,d) =
∑
c′′:(f−1h(i−1))c′′>0 wc′′ ,

so therefore phi
(w, f ′ − 1h(i−1)) =

whi

N(w,h(i−1),C′u,d)
= ph(w, h(i − 1), C ′u,d). Therefore, since each

multiplicand in the two products are equal, the products are equal.

Thus, since the probabilities are equal, then

akc (w, f) =
∑
h∈Ck

count(h, c)ph(w,C ′u,d) (24)

akc (w, f) = Au,dc (w). (25)

13



Now that we have established that akc accurately captures the problem without property targeting, we
move on to describe the recursive nature of akc . Since a lot of properties about akc are easiest to prove
recursively on k, having a recursive formulation simplifies their presentation dramatically. We first show the
recursive nature of p:

Fact 26 ph◦h′(w, f) = ph(w, f)ph′(w, f − 1h).

Lemma 27 If k ≥
∑
c∈C max(f ′c, 0), then: ∑

h∈Ck

ph(w, f ′) = 1 (26)

Proof: We prove this by recursion. First, it is true by definition for k = 0. Secondly, assume it is true for
k − 1. Then, we can write: ∑

h∈Ck

ph(w, f ′) =
∑

c∈C,h∈Ck−1

pc◦h(w, f ′) (27)

∑
h∈Ck

ph(w, f ′) =
∑
c∈C

∑
h∈Ck−1

pc(w, f
′)pc◦h(w, f ′ − 1c) (28)

∑
h∈Ck

ph(w, f ′) =
∑
c∈C

pc(w, f
′)

∑
h∈Ck−1

pc◦h(w, f ′ − 1c) (29)

Now, if f ′c ≤ 0, then pc(w, f
′) = 0, so:∑

h∈Ck

ph(w, f ′) =
∑

c∈C:f ′c>0

pc(w, f
′)

∑
h∈Ck−1

pc◦h(w, f ′ − 1c) (30)

If f ′c > 0, then
(∑

c∈C max(f ′i , 0)
)
− 1 =

∑
c′∈C max((f ′ − 1c)c′ , 0). Therefore,

∑
c′∈C max((f ′ − 1c)c′ , 0) ≤

k − 1, so by induction: ∑
h∈Ck

ph(w, f ′) =
∑

c∈C:f ′c>0

pc(w, f
′) (31)

Finally, since pc(w, f
′) = wc∑

c′∈C:f′
c′

>0 wc′
:

∑
h∈Ck

ph(w, f ′) =
∑

c∈C:f ′c>0

wc∑
c′∈C:f ′

c′>0 wc′
(32)

∑
h∈Ck

ph(w, f ′) =
1∑

c′∈C:f ′
c′>0 wc′

∑
c∈C:f ′c>0

wc (33)

∑
h∈Ck

ph(w, f ′) = 1. (34)

We can also describe ak recursively:

Lemma 28

a0 = 0

akc (w, f ′) = pc(w, f
′) +

∑
{c′:fc′ 6=0}

pc′(w, f
′)ak−1

c (w, f ′ − 1c
′
) (35)

14



Proof: We need to show that Equation 35 is the same as Equation 21. This holds for zero, because
a0
c(w, f

′) =
∑
h∈C0 ph(w, f ′)count(h, c) = p∅(w, f

′)count(∅, c) = 0. We can prove the other case without

resorting to induction. By the definition of akc :

akc (w, f) =
∑
h∈Ck

count(h, c)ph(w, f) (36)

akc (w, f) =
∑

c′∈C,h∈Ck−1

count(c′ ◦ h, c)pc′◦h(w, f) (37)

akc (w, f) =
∑

h∈Ck−1

pc◦h(w, f)

+
∑

c′∈C,h∈Ck−1

count(h, c)pc′◦h(w, f) (38)

By Fact 26:

akc (w, f) =
∑

h∈Ck−1

pc(w, f)ph(w, f − 1c)

+
∑

c′∈C,h∈Ck−1

count(h, c)pc′(w, f)ph(w, f − 1c
′
) (39)

akc (w, f) =pc(w, f)
∑

h∈Ck−1

ph(w, f − 1c)

+
∑
c′∈C

pc′(w, f)
∑

h∈Ck−1

count(h, c)ph(w, f − 1c
′
) (40)

By the definition of ak−1
c :

akc (w, f) =pc(w, f)
∑

h∈Ck−1

ph(w, f − 1c)

+
∑
c′∈C

pc′(w, f)ak−1
c (w, f − 1c

′
) (41)

By Lemma 27:

akc (w, f) = pc(w, f) +
∑
c′∈C

pc′(w, f)ak−1
c (w, f − 1c

′
) (42)

C Proof That Frequency Capping Model is Well-Behaved

Fact 29 If for some c′ ∈ C, fc > 0, then
∑
c∈C pc(w, f) = 1.

Fact 30 akc (w, f) ≤ k.

Fact 31 akc (w, f) ≤ fc.

First, with Lemma 32 and Lemma 33, we prove that scaling all the weights has no effect.

Lemma 32 For any v ∈ (R+)n, for any f ∈ Fn, for any α ≥ 1, p(v, f) = p(αv, f).

15



Proof: For any c ∈ C, if fc = 0, then pc(v, f) = 0 = pc(αv, f). Otherwise:

pc(αv, f) =
αvc∑

c′:fc′ 6=0 αvc
(43)

pc(αv, f) =
vc∑

c′:fc′ 6=0 vc
(44)

pc(αv, f) = pc(v, f) (45)

Lemma 33 For any v ∈ (R+)n, for any f ∈ Fn, for any α ≥ 1, ak(v, f) = ak(αv, f).

Proof: Effectively, multiplying everything by a ratio changes nothing, but to be complete, we prove by
induction on k. First, observe that a0 = 0, so a0(v, f) = a0(αv, f). By definition:

ak(αv, f) = pc(αv, f) +
∑

c′:fc′ 6=0

pc′(αv, f)ak−1(αv, f) (46)

ak(αv, f) = pc(v, f) +
∑

c′:fc′ 6=0

pc′(v, f)ak−1(αv, f) (by Lemma 32) (47)

ak(αv, f) = pc(v, f) +
∑

c′:fc′ 6=0

pc′(v, f)ak−1(v, f) (by induction) (48)

ak(αv, f) = ak(v, f) (by definition) (49)

Now, with Lemmas 34-36, we show that increasing a weight does not decrease the number of impressions
for that contract.

Lemma 34 For any w ∈ (R+)n, for any f ∈ Fn, any c ∈ C, if fc ≥ 1 then ak−1
c (w, f − 1c) ≥ akc (w, f) + 1.

In other words, increasing the frequency cap of c by 1 and increasing the number of impressions remaining
will not increase the number of impressions by more than 1.

Proof: We prove this via induction on k. First, a0 = 0 and by Fact 30 a1(w, f) ≤ 1, so a0(w, f − 1c) ≥
a1(w, f)− 1. Assume that the result holds for k − 1.

1. If fc = 1, then by Fact 31, akc (w, f) ≤ fc = 1 and ak−1
c (w, f − 1c) = 0, so the result holds.

2. Otherwise, we know that p(w, f) = p(w, f − 1c), so:

ak−1(w, f − 1c) = pc(w, f − 1c) +
∑

c′:fc′ 6=0

pc′(w, f − 1c)ak−2(w, f − 1c − 1c
′
) (50)

ak−1(w, f − 1c) = pc(w, f) +
∑

c′:fc′ 6=0

pc′(w, f)ak−2(w, f − 1c − 1c
′
) (51)

ak−1(w, f − 1c) ≥ pc(w, f) +
∑

c′:fc′ 6=0

pc′(w, f)(ak−1(w, f − 1c
′
)− 1) (by induction) (52)

ak−1(w, f − 1c) ≥ −1 + pc(w, f) +
∑

c′:fc′ 6=0

pc′(w, f)ak−1(w, f − 1c
′
) (by Fact 29) (53)

ak−1(w, f − 1c) ≥ −1 + ak(w, f) (54)

16



Lemma 35 For any w ∈ (R+)n, for any f ∈ Fn, any c, c′ ∈ C where c 6= c′, if fc ≥ 1 and fc′ ≥ 1, then
akc (w, f − 1c) ≥ akc (w, f − 1c

′
)− 1. In other words, increasing the frequency cap of c by 1 and decreasing the

cap of another contract will not increase the number of impressions by more than 1.

Proof: If fc = 1, then since akc (w, f − 1c
′
) ≤ fc = 1, and akc (w, f − 1c) = 0, the result holds.

We prove this via induction on k. First, observe that a0 = 0, so a0(w, f − 1c) = a0(w, f − 1c
′
) ≤

a0(w, f − 1c
′
) + 1. Assume that it holds for k − 1.

1. If fc > 1 and fc′ > 1, then by definition:

akc (w, f − 1c
′
)− akc (w, f − 1c) =pc(w, f − 1c

′
)− pc(w, f − 1c)

+
∑

c′′:fc′′ 6=0

pc(w, f − 1c
′
)ak−1
c (w, f − 1c

′
− 1c

′′
)− pc(w, f − 1c)ak−1

c (w, f − 1c − 1c
′′
)

(55)

akc (w, f − 1c
′
)− akc (w, f − 1c) =

∑
c′′:fc′′ 6=0

pc(w, f − 1c)(ak−1
c (w, f − 1c

′
− 1c

′
)− ak−1

c (w, f − 1c − 1c
′′
))

(56)

By induction, ak−1
c (w, f − 1c

′ − 1c
′′
)− ak−1

c (w, f − 1c − 1c
′′
) ≤ 1, so:

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤

∑
c′′:fc′′ 6=0

pc(w, f − 1c)(1) (57)

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤1 (58)

2. If fc > 1 and fc′ = 1, then by definition:

akc (w, f − 1c
′
)− akc (w, f − 1c) =pc(w, f − 1c

′
)− pc(w, f − 1c)

− pc′(w, f − 1c)ak−1
c (w, f − 1c − 1c

′
)

+
∑

c′′:fc′′ 6=0,c′′ 6=c′
pc(w, f − 1c

′
)ak−1
c (w, f − 1c

′
− 1c

′′
)− pc(w, f − 1c)ak−1

c (w, f − 1c − 1c
′′
)

(59)

akc (w, f − 1c) =pc(w, f − 1c)+

pc′(w, f − 1c)ak−1
c (w, f − 1c − 1c

′
)

+
∑

c′′:fc′′ 6=0,c′′ 6=c′
pc(w, f − 1c)ak−1

c (w, f − 1c − 1c
′′
) (60)

By Lemma 34, ak−1
c (w, f−1c−1c

′
) ≥ ak(w, f−1c

′
)−1. Define S =

∑
c′′ 6=c′ pc′′(w, f), so that pc′(w, f−

1c) = pc′(w, f) = wc′′
wc′′+S

, and that for any c′′ 6= c′, pc′′(w, f − 1c) = pc′′(w, f) = S
wc′′+S

pc′′(w, f − 1c
′′
).

Then:

akc (w, f − 1c
′
)− akc (w, f − 1c) =

wc′′

wc′′ + S
+

S

wc′′ + S
akc (w, f − 1c

′
)− pc(w, f − 1c)

−
∑

c′′:fc′′ 6=0,c′′ 6=c′
pc(w, f − 1c)ak−1

c (w, f − 1c − 1c
′′
) (61)

17



Note that:

S

w′′c + S
akc (w, f − 1c

′
) =

S

wc′′ + S
pc(w, f − 1c

′
)

+
∑

c′′:fc′′ 6=0,c′′ 6=c′

S

wc′′ + S
pc(w, f − 1c

′
)ak−1
c (w, f − 1c

′
− 1c

′′
) (62)

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤ wc′′

wc′′ + S
− pc(w, f − 1c)

−
∑

c′′:fc′′ 6=0,c′′ 6=c′
pc(w, f − 1c)ak−1

c (w, f − 1c − 1c
′′
)

+
S

wc′′ + S
pc(w, f − 1c

′
)

+
∑

c′′:fc′′ 6=0,c′′ 6=c′

S

wc′′ + S
pc(w, f − 1c

′
)ak−1
c (w, f − 1c

′
− 1c

′′
) (63)

Because for any c′′ 6= c′, pc′′(w, f − 1c) = S
wc′′+S

pc′′(w, f − 1c
′′
):

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤ wc′′

wc′′ + S
− S

wc′′ + S
pc(w, f − 1c

′
)

−
∑

c′′:fc′′ 6=0,c′′ 6=c′

S

wc′′ + S
pc(w, f − 1c

′
)ak−1
c (w, f − 1c − 1c

′′
)

+
S

wc′′ + S
pc(w, f − 1c

′
)

+
∑

c′′:fc′′ 6=0,c′′ 6=c′

S

wc′′ + S
pc(w, f − 1c

′
)ak−1
c (w, f − 1c

′
− 1c

′′
) (64)

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤ wc′′

wc′′ + S

+
∑

c′′:fc′′ 6=0,c′′ 6=c′

S

wc′′ + S
pc(w, f − 1c

′
)(ak−1

c (w, f − 1c
′
− 1c

′′
)− ak−1

c (w, f − 1c − 1c
′′
))

(65)

By recursion:

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤ wc′′

wc′′ + S
+

∑
c′′:fc′′ 6=0,c′′ 6=c′

S

wc′′ + S
pc(w, f − 1c

′
)1 (66)

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤ wc′′

wc′′ + S
+

S

wc′′ + S
(67)

akc (w, f − 1c
′
)− akc (w, f − 1c) ≤1 (68)

Lemma 36 For any v ∈ (R+)n, for any f ∈ Fn, for any α ≥ 1, for any c ∈ C, given w ∈ (R+)n where
wc = αvc, and for all c′ ∈ C where c′ 6= c, wc′ = vc′ , a

k
c (w, f) ≥ akc (v, f).

Proof: We prove this by induction on k. For k = 0, a0(w, f) = a0(v, f) = 0. Assume that the result holds
for k − 1. If fc = 0, then ak(w, fc) = ak(v, fc) = 0. Thus, without loss of generality, assume that fc 6= 0.
define S = (

∑
c′′:fc′′ 6=0 vc′′)− vc. Then, for c′ 6= c, pc′(w, f) = vc′

wc+S = S
wc+S pc′(v, f), and pc(w, f) = wc

wc+S .

18



Therefore:

akc (v, f) =pc(v, f) +
∑

c′′:fc′′ 6=0

pc′′(v, f)ak−1
c (v, f − 1c

′′
) (by definition) (69)

akc (v, f) ≤pc(v, f) +
∑

c′′:fc′′ 6=0

pc′′(v, f)ak−1
c (w, f − 1c

′′
) (by induction) (70)

akc (w, f)− akc (v, f) ≥pc(w, f)− pc(v, f) (71)

+
∑

c′′:fc′′ 6=0

(pc′′(w, f)− pc′′(v, f))ak−1
c (w, f − 1c

′′
) (72)

Note that since
∑
c′∈C pc(w, f) = 1 =

∑
c′∈C pc(v, f), we can write pc(w, f) − pc(v, f) =

∑
c′ 6=c(pc(v, f) −

pc(w, f)). Since pc′′(v, f) = pc′′(w, f) = 0 if fc′′ = 0, pc(w, f) − pc(v, f) =
∑
c′′:fc′′ 6=0,c′′ 6=c(pc′′(v, f) −

pc′′(w, f))).

akc (w, f)− akc (v, f) ≥pc(w, f)− pc(v, f) + (pc(w, f)− pc(v, f))akc (w, f − 1c) (73)

+
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(w, f)− pc′′(v, f))akc (w, f − 1c
′′
) (74)

akc (w, f)− akc (v, f) ≥(pc(w, f)− pc(v, f))(1 + akc (w, f − 1c)) (75)

+
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(w, f)− pc′′(v, f))akc (w, f − 1c
′′
) (76)

akc (w, f)− akc (v, f) ≥(
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(v, f)− pc′′(w, f)))(1 + akc (w, f − 1c)) (77)

+
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(w, f)− pc′′(v, f))akc (w, f − 1c
′′
) (78)

akc (w, f)− akc (v, f) ≥(
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(v, f)− pc′′(w, f)))(1 + akc (w, f − 1c)) (79)

−
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(v, f)− pc′′(w, f))akc (w, f − 1c
′′
) (80)

akc (w, f)− akc (v, f) ≥
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(v, f)− pc′′(w, f))(1 + akc (w, f − 1c)− akc (w, f − 1c
′′
)) (81)

Observe that for c′′ 6= c, pc′′(v, f) = wc′′
wc+S = vc′′

wc+S = vc+S
wc+S

vc′′
vc+S = vc+S

wc+S pc′′(v, f). Since vc < wc, pc′′(v, f) >
pc′′(w, f).

Secondly observe that for all w, f , where fc 6= 0, for all c′′ 6= c where fc′′ 6= 0, by Lemma 35,1 +akc (w, f −
1c)−akc (w, f−1c

′′
) ≥ 0. Thus, each summand in the sum is a product of two non-negative numbers, meaning

the sum is non-negative. So:

akc (w, f)− akc (v, f) ≥ 0 (82)

akc (w, f) ≥ akc (v, f). (83)

Now, we prove that increasing the weight of a contract does not increase the mass too much.

Lemma 37 For any w ∈ (R+)n, for any f, f ′ ∈ Fn, if f ′ ≥ f but fc = f ′c, then akc (w, f) ≥ akc (w, f ′). In
other words, increasing the frequency cap of c′ will not increase the number of impressions received by c.

Proof: The proof is via recursion on recursion. First, it is obvious for a0, because a0 = 0. We prove it for all
k. However, in the recursive step it is sufficient to prove (given the result for k−1), akc (w, f) ≥ ak(w, f+1c

′
)

on some c′ ∈ C where c′ 6= c. Then, by induction one can prove it for any f ′ ≥ f where f ′c = fc. Consider
two cases:

19



1. fc′ 6= 0. Then p(w, f) = p(w, f + 1c
′
). By the definition of ak:

akc (w, f + 1c
′
) = pc(w, f) +

∑
{c′′:fc′′ 6=0}

pc′′(w, f)ak−1
c (w, f + 1c

′
− 1c

′′
). (84)

By induction, ak−1
c (w, f + 1c

′ − 1c
′′
) ≤ ak−1

c (w, f − 1c
′′
), so:

akc (w, f + 1c
′
) ≤ pc(w, f) +

∑
{c′′:fc′′ 6=0}

pc′′(w, f)ak−1
c (w, f − 1c

′′
) (85)

akc (w, f + 1c
′
) ≤ akc (w, f). (86)

2. fc′ = 0. Then p(w, f) 6= p(w, f + 1c
′
). In particular, define S =

∑
c′′:fc′′ 6=0 wc′′ . Then, pc′(w, f + 1c

′
) =

wc′
S+wc′

, and for c′′ 6= c′, pc′′(w, f + 1c
′
) = S

S+wc′
pc′′(w, f). Then, it is clear that:

akc (w, f + 1c
′
) = pc(w, f + 1c

′
) + pc′(w, f + 1c

′
)ak−1
c (w, f) (87)

+
∑

{c′′:fc′′ 6=0}

pc′′(w, f + 1c
′
)ak−1
c (w, f + 1c

′
− 1c

′′
) (88)

akc (w, f + 1c
′
) ≤ S

S + wc′
pc′(w, f) +

wc′

S + wc′
ak−1
c (w, f) (89)

+
∑

{c′′:fc′′ 6=0}

S

S + wc′
pc′′(w, f)ak−1

c (w, f − 1c
′′
) (by induction) (90)

akc (w, f + 1c
′
) ≤ S

S + wc′

pc′(w, f) +
∑

{c′′:fc′′ 6=0}

pc′′(w, f)ak−1
c (w, f − 1c

′′
))

 (91)

+
wc′

S + wc′
ak−1
c (w, f) (92)

akc (w, f + 1c
′
) ≤ S

S + wc′

(
akc (w, f)

)
+

wc′

S + wc′
ak−1
c (w, f) (93)

Therefore, we are left with a mix of akc (w, f) and ak−1
c (w, f). Note that akc (w, f) ≥ ak−1

c (w, f), so:

akc (w, f + 1c
′
) ≤ S

S + wc′

(
akc (w, f)

)
+

wc′

S + wc′
akc (w, f) (94)

akc (w, f + 1c
′
) ≤ akc (w, f) (95)

Lemma 38 For any w ∈ (R+)n, for any f ∈ Fn, akc (w, f + 1c) ≥ akc (w, f). In other words, increasing the
frequency cap of c will not decrease the number of impressions received by c.

Proof: We prove this by induction on k. First, observe that a0
c(w, f + 1c) = a0

c(w, f) = 0. Now, assume
that the result holds for k − 1. If fc = 0, then ak(w, f + 1c) ≥ 0 = ak(w, f). Therefore, we can assume that
fc 6= 0. This implies (f + 1c)c′ 6= 0 if and only if fc′ 6= 0, and p(w, f) = p(w, f + 1c), so:

akc (w, f + 1c) = p(w, f + 1c) +
∑

c′:(f+1c)c′ 6=0

p(w, f + 1c)ak−1
c (w, f + 1c − 1c

′
) (96)

akc (w, f + 1c) = p(w, f) +
∑

c′:fc′ 6=0

p(w, f)ak−1
c (w, f + 1c − 1c

′
) (97)

akc (w, f + 1c) ≥ p(w, f) +
∑

c′:fc′ 6=0

p(w, f)ak−1
c (w, f − 1c

′
) (by induction) (98)

akc (w, f + 1c) ≥ ak(w, f) (by definition) (99)

20



Lemma 39 For any v ∈ (R+)n, for any f ∈ Fn, for any α ≥ 1, for any c ∈ C, given w ∈ (R+)n where
wc = αvc, a

k
c (w, f) ≤ αakc (v, f).

Proof: We prove this by induction on k. First, observe that a0 = 0, so a0
c(w, f) ≤ αa0(v, f).

akc (w, f) =pc(w, f) +
∑

c′′:fc′′ 6=0

pc(w, f)ak−1
c (w, f − 1c

′′
) (by definition) (100)

akc (w, f) ≤pc(w, f) +
∑

c′′:fc′′ 6=0

pc(w, f)αak−1
c (v, f − 1c

′′
) (by induction) (101)

αakc (v, f)− akc (w, f) ≥αpc(v, f)− pc(w, f) (102)

+
∑

c′′:fc′′ 6=0

(αpc′′(v, f)− αpc′′(w, f))ak−1
c (v, f − 1c

′′
) (103)

αakc (v, f)− akc (w, f) ≥αpc(v, f)− pc(w, f) (104)

+ α
∑

c′′:fc′′ 6=0

(pc′′(v, f)− pc′′(w, f))ak−1
c (v, f − 1c

′′
) (105)

Define S =
∑
c′ 6=c:fc′ 6=0 wc′ . Then, for c′ 6= c, pc′(w, f) = vc+S

wc+S pc′(v, f), and pc(w, f) = wc

wc+S .

αakc (v, f)− akc (w, f) ≥αpc(v, f)− pc(w, f)

+ α(pc(v, f)− pc(w, f))ak−1
c (v, f − 1c)

+ α
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(v, f)− pc′′(w, f))ak−1
c (v, f − 1c

′′
) (106)

(107)

Note that since
∑
c′∈C pc(w, f) = 1 =

∑
c′∈C pc(v, f), we can write pc(w, f)−pc(v, f) =

∑
c′ 6=c(pc(v, f)−

pc(w, f)). Since pc′′(v, f) = pc′′(w, f) = 0 if fc′′ = 0, pc(w, f) − pc(v, f) =
∑
c′′:fc′′ 6=0,c′′ 6=c(pc′′(v, f) −

pc′′(w, f))).

αakc (v, f)− akc (w, f) ≥αpc(v, f)− pc(w, f)

+ α
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(w, f)− pc′′(v, f))ak−1
c (v, f − 1c)

+ α
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(v, f)− pc′′(w, f))ak−1
c (v, f − 1c

′′
) (108)

αakc (v, f)− akc (w, f) ≥αpc(v, f)− pc(w, f)

+ α
∑

c′′:fc′′ 6=0,c′′ 6=c

(pc′′(v, f)− pc′′(w, f))(ak−1
c (v, f − 1c

′′
)− ak−1

c (v, f − 1c)) (109)

By Lemma 37 and Lemma 38, ak−1
c (v, f −1c

′′
)−ak−1

c (v, f −1c) ≥ 0. Since c′′ 6= c, pc′′(v, f)−pc′′(w, f) ≥ 0,
so α

∑
c′′:fc′′ 6=0,c′′ 6=c(pc′′(v, f)− pc′′(w, f))(ak−1

c (v, f − 1c
′′
)− ak−1

c (v, f − 1c)) ≥ 0, which implies:

αakc (v, f)− akc (w, f) ≥αpc(v, f)− pc(w, f) (110)

By definition:

pc(w, f) =
wc

wc + S
(111)

pc(w, f) ≤ wc
vc + S

since vc < wc, (112)

pc(w, f) ≤ αpc(v, f) (113)

21



Plugging this into Equation 110:

αakc (v, f)− akc (w, f) ≥0. (114)

Thus, αakc (v, f) ≥ akc (w, f).

D Proving Increasing Your Weight Does Not Help Others

In this section, we prove the last property of well-behavedness (property 1) for frequency capped contracts
without property targeting. This analysis is radically different than the recursive analysis presented else-
where, and it is where the no-property targeting constraint is actually leveraged. In particular, we consider
how adding (or removing) one contract effects the other contracts.

Define Hk
f to be the set of all histories of length j = min(k,

∑
c′∈C fc′) where h ∈ Cj is in Hk

f if and only

if for all c ∈ C, count(h, c) ≤ fc. As we discussed when we defined akc , in general k ≤
∑
c′∈C fc′ . If this is

the case, we can establish that:

Lemma 40
∑
h∈Hk

f
ph(w, f) = 1.

Corollary 41 akc (w, f) =
∑
h∈Hk

f
count(h, c)ph(w, f).

Proof: Define j = min(k,
∑
c′∈C fc′). By definition,Hj

f ⊆ Cj . Since j ≤
∑
c′∈C fc′ , by Lemma 27:

1 =
∑
h∈Cj

ph(w, f) (115)

1 =
∑
h∈Hk

f

ph(w, f) +
∑

h∈Cj\Hk
f

ph(w, f) (116)

Note that if h ∈ Cj\Hk
f , then there exists a c ∈ C such that fc < count(h, c). Therefore, ph(w, f) = 0, so:

1 =
∑
h∈Hk

f

ph(w, f). (117)

Define Hk
f,a = Hk

f ′ where f ′a = 0 and f ′c = fc if c 6= a. In what follows, we will connect Hk
f,a to Hk

f by
inserting as.

Define last(h, c) to be the largest i such that hi = c.
For c ∈ C, h ∈ C∗, 1 ≤ i ≤ |h| + 1, Define Ins(h, c, i) ∈ C |h|+1 such that Ins(h, c, i)j = hj if j < i,

Ins(h, c, i)j = c if i = j, and Ins(h, c, i)j = hj−1 if j < i. In other words, Ins(h, a, k) is a function from a
history h, an ad a, and a position k, to a new history where that ad is inserted before that position.

Then, define Ins∗(h, a) to be a function from a history h, an ad a, to a set of histories where we insert a
before each position. Formally,

Ins∗(h, a) =

|h|⋃
i=k

Ins(h, a, k) (118)

Then, define Ins∗k(h, a) to be a function from a history h, an ad a, and an non-negative integer n to a
set of histories, where:

Ins∗0(h, a) = {h} (119)

Ins∗k+1(h, a) = Ins∗k(h, a) ∪
⋃

h′∈Ins∗k(h,a)

Ins∗(h′, a) (120)

Define Gkf,a =
⋃
h∈Hk

f,a
Ins∗fa(h, a). Note that for any h, h′ ∈ Hk

f,a where h 6= h′, Ins∗fa(h, a) and

Ins∗fa(h′, a) are disjoint.

22



Lemma 42
∑
h∈Gk

f,a
ph(w, f) = 1.

Proof: Define j =
∑
c∈C\a fc. Note that for k > j, Gkf,a = Gjf,a. Thus, without loss of generality, assume

k ≤ j. We prove the result inductively on k. Observe that for k = 0, H0
f,a = {∅}, a set consisting of one

zero-length vector, and G0
f,a = {∅}. So,

∑
h∈G0

f,a
ph(w, f) = p∅(w, f) = 1.

Now, we assume the result holds for k − 1. We now have to do induction on fa. If fa = 0 and k ≥ 1,
then:

Gkf,a =
⋃

c′∈C\a:fc′ 6=0

(
c′ ◦Gk−1

f−1c′ ,a

)
. (121)

Therefore: ∑
h∈Gk

f,a

ph(w, f) =
∑

c′∈C\a:fc′ 6=0

∑
h′∈Gk−1

f−1c
′
,a

pc′◦h′(w, f) (122)

∑
h∈Gk

f,a

ph(w, f) =
∑

c′∈C\a:fc′ 6=0

pc′(w, f)
∑

h′∈Gk−1

f−1c
′
,a

ph′(w, f − 1c
′
) (123)

By induction,
∑
h′∈Gk′−1

f−1c
′
,a

ph′(w, f − 1c
′
) = 1, so:

∑
h∈Gk

f,a

ph(w, f) =
∑

c′∈C\a:fc′ 6=0

pc′(w, f) (124)

∑
h∈Gk

f,a

ph(w, f) = 1 (125)

Thus, we have established the base case for fa. Now, if fa ≥ 1, and the inductive hypothesis holds for k− 1
and fa − 1:

∑
h∈Gk

f,a

ph(w, f) =

 ∑
h∈Gk−1

f−1a,a

pa◦h(w, f)


+

∑
c′∈C\a:fc′ 6=0

∑
h′∈Gk−1

f−1c
′
,a

pc′◦h′(w, f) (126)

∑
h∈Gk

f,a

ph(w, f) =

 ∑
h∈Gk

f−1a,a

pa(w, f)ph(w, f − 1a)


+

∑
c′∈C\a:fc′ 6=0

∑
h′∈Gk−1

f−1c
′
,a

pc′(w, f)ph′(w, f − 1c
′
) (127)

∑
h∈Gk

f,a

ph(w, f) =

pa(w, f)
∑

h∈Gk
f−1a,a

ph(w, f − 1a)


+

∑
c′∈C\a:fc′ 6=0

pc′(w, f)
∑

h′∈Gk−1

f−1c
′
,a

ph′(w, f − 1c
′
) (128)

23



By the inductive hypothesis: ∑
h∈Gk

f,a

ph(w, f) =pa(w, f) +
∑

c′∈C\a:fc′ 6=0

pc′(w, f) (129)

∑
h∈Gk

f,a

ph(w, f) =1. (130)

Theorem 43 If c 6= a, and k′ > k, then:

akc (w, f) =
∑

h∈Hk′
f,a

∑
h′∈Ins∗fa (h,a)

count(h′(k), c)ph′(w, f) (131)

where h′(k) = h′ if k ≥ |h′|.

Proof: Define j =
∑
c′∈C fc′ . If k > j, then akc′ = ajc′ . So, therefore, without loss of generality, assume

k ≤ j.
Define Gk

′

f,a =
⋃
h∈Hk′

f,a
Ins∗fa(h, a). Note that H0

f,a = {∅}, a set with one entry which is a sequence of

length zero. Also, G0
f,a = {∅}.

Now, we prove the theorem by induction on k. First, if k = 0:∑
h∈Hk′

f,a

count(h(0), c)ph(w, f) =
∑

h∈Hk′
f,a

0 (132)

∑
h∈Hk′

f,a

count(h(0), c)ph(w, f) = 0 (133)

∑
h∈Hk′

f,a

count(h(0), c)ph(w, f) = a0
c(w, f) (134)

Now, we assume that the result holds for k−1. We now have to do induction on fa. If fa = 0 and k ≥ 1,
then k′ ≥ 1 and:

Gk
′

f,a =
⋃

c′∈C\a:fc′ 6=0

(
c′ ◦Gk

′−1
f−1c′ ,a

)
. (135)

Therefore:∑
h∈Gk′

f,a

count(h(k), c)ph(w, f) =
∑

c′∈C\a:fc′ 6=0

∑
h∈Gk′−1

f−1c
′
,a

count((c′ ◦ h)(k), c)pc′◦h(w, f) (136)

=
∑

c′∈C\a:fc′ 6=0

∑
h∈Gk′−1

f−1c
′
,a

(count(c′, c) + count(h(k − 1), c))pc′(w, f)ph(w, f − 1c
′
)

(137)

If fc = 0, then
∑
c′∈C\a:fc′ 6=0

∑
h∈Gk′−1

f−1c
′
,a

count(c′, c)pc′(w, f)ph(w, f − 1c
′
) = 0 = pc(w, f). Otherwise:∑

c′∈C\a:fc′ 6=0

∑
h∈Gk′−1

f−1c
′
,a

count(c′, c)pc′(w, f)ph(w, f − 1c
′
) = pc(w, f)

∑
h∈Gk′−1

f−1c,a

ph(w, f − 1c) (138)

∑
c′∈C\a:fc′ 6=0

∑
h∈Gk′−1

f−1c
′
,a

count(c′, c)pc′(w, f)ph(w, f − 1c
′
) = pc(w, f)

∑
h∈Hk′−1

f−1c

ph(w, f − 1c) (139)

∑
c′∈C\a:fc′ 6=0

∑
h∈Gk−1

f−1c
′
,a

count(c′, c)pc′(w, f)ph(w, f − 1c
′
) = pc(w, f) (140)

24



Thus, plugging this back into Equation 137:∑
h∈Gk′

f,a

count(h(k), c)ph(w, f) =pc(w, f) +
∑

c′∈C\a:fc′ 6=0

∑
h∈Gk′−1

f−1c
′
,a

count(h(k − 1), c)pc′(w, f)ph(w, f − 1c
′
)

(141)

By the inductive hypothesis,
∑
h∈Gk′−1

f−1c
′
,a

count(h(k − 1), c)ph(w, f − 1c
′
) = ak−1

c′ (w, f − 1c
′
).

∑
h∈Gk′

f,a

count(h(k), c)ph(w, f) =pc(w, f) +
∑

c′∈C\a:fc′ 6=0

pc′(w, f)ak−1
c′ (w, f − 1c

′
) (142)

∑
h∈Gk′

f,a

count(h(k), c)ph(w, f) =akc (w, f) (143)

Observe that if k > 1 and fa > 1, and we have established the fact for k − 1 and fa − 1, then:

Gk
′

f,a =
(
a ◦Gk

′

f−1a,a

)
∪

⋃
c′∈C\a:fc′ 6=0

(
c′ ◦Gk−1

f−1c′ ,a

)
. (144)

25



Thus, following a similar pattern to before:

∑
h∈Gk′

f,a

count(h(k), c)ph(w, f) =

 ∑
h∈Gk′

f−1a,a

count((a ◦ h)(k), c)pa◦h(w, f)


+

∑
c′∈C\a:fc′ 6=0

∑
h∈Gk′−1

f−1c
′
,a

count((c′ ◦ h)(k), c)pc′◦h(w, f) (145)

=

pa(w, f)
∑

h∈Gk′
f−1a,a

count(h(k − 1), c)ph(w, f − 1a)


+

∑
c′∈C\a:fc′ 6=0

pc′(w, f)
∑

h∈Gk′−1

f−1c
′
,a

(count(c′, c) + count(h(k − 1), c))ph(w, f − 1c
′
)

(146)

=

pa(w, f)
∑

h∈Gk
f−1a,a

count(h(k − 1), c)ph(w, f − 1a)


+ pc(w, f)

∑
h∈Gk′−1

f−1c,a

ph(w, f − 1c)

+
∑

c′∈C\a:fc′ 6=0

pc′(w, f)ak−1
c (w, f − 1c

′
) (147)

=
(
pa(w, f)ak−1(w, f − 1a)

)
+ pc(w, f)

∑
h∈Gk′−1

f−1c,a

ph(w, f − 1c)

+
∑

c′∈C\a:fc′ 6=0

pc′(w, f)ak−1
c (w, f − 1c

′
) (148)

=pc(w, f)
∑

h∈Gk′−1
f−1c,a

ph(w, f − 1c)

+
∑

c′∈C:fc′ 6=0

pc′(w, f)ak−1
c (w, f − 1c

′
) (149)

By Lemma 42:

∑
h∈Gk′

f,a

count(h(k), c)ph(w, f) =pc(w, f) +
∑

c′∈C:fc′ 6=0

pc′(w, f)ak−1
c (w, f − 1c

′
) (150)

∑
h∈Gk′

f,a

count(h(k), c)ph(w, f) =akc (w, f) (151)

Assume that h is a subsequence of h′. Define Ch,i(h
′) to indicate whether the ith element of h is before

or at the vth position of h′ (1 if true, 0 if false).

26



Theorem 44 For any a′ 6= a, if A is the set of pairs h, i ∈ (Hk
f,a × Z) where hi = a′, then the expected

number of impressions of a′ can be written:

aka′(S) =
∑

(h,i)∈A

∑
h′∈Ins∗fa (h,a)

ph′(S)Ch,i(h
′) (152)

Proof: By Theorem 43,

aka′(S) =
∑

h∈Gk
f,a

ph(S)count(h(k), a′) (153)

aka′(S) =
∑

h∈Hk
f,a

∑
h′∈Ins∗fa (h,a)

ph′(S)count(h′(k), a′) (154)

Define A(h) = {i : hi = a′}. Note that count(h′, a′) =
∑
i∈A(h) Ch,i(h

′). Thus:

aka′(S) =
∑

h∈Hk
f,a

∑
i∈A(h)

∑
h′∈Ins∗fa (h,a)

ph′(S)Ch,i(h
′) (155)

aka′(S) =
∑
h,i∈A

∑
h′∈Ins∗fa (h,a)

ph′(S)Ch,i(h
′) (156)

Suppose we were to change the weight of a, but only on the first visit. In particular, we fixed it such
that pa(S′) = αpa(S). If we leave the other masses the same, then for a′ 6= a, pa′(S

′) = βpa(S′), where
β(1− pa(S′)) + αpS′(a) = 1. Define

∆a′ = aka′(S
′)− aka′(S), (157)

∆h,i =
∑

h′∈Ins∗fa (h,a)

(ph′(S
′)− ph(S))Ch,i(h

′). (158)

Thus, given A defined as in Theorem 44, by that theorem:

∆a′ =
∑

(h,i)∈A

∆h,i (159)

We wish to prove that ∆a′ is non-positive if α > 1. We can do this by proving that ∆h,i is non-positive. In
particular, what we will do is show that for any history h ∈ Hk

f,a, for any h′ ∈ Ins∗fa(h, a), that begins with
a, we can find a set of histories in H ′ ⊆ Ins∗fa(h, a) that do not begin with a such that for all i ∈ {1 . . . |h|},
for all h′′ ∈ H ′, Ch,i(h′) ≤ Ch,i(h′′).

Define Mi,j(h) such that if count(h, a) < j−i, then Mi(h) = {h}. If count(h, a) = j−i, then if h = h′◦h′′,
where count(h′′, a) = 0 and either |h′| = 0 or h′|h′| = a, then Mi,j(h) = h′ ◦ Ins∗i(h

′′, a).

Lemma 45 Given h ∈ Hk
f,a, and h′ = a ◦ . . . ◦ a, where |h′| = i, and h′′ ∈ Hk

f−i1a , and h′′′ = h′ ◦ h′′, then

for any hiv ∈Mi,fa(h′′′), for all j ∈ {1 . . . |h|}, Ch,j(h′′′) ≤ Ch,j(hiv).

Proof: For any j ∈ {1 . . . |h|}, for any hv ∈ Ins∗fa(h, a) define Xh,j(h
v) to be the position of the jth

element of h in hv. For any j, Xh,i(h
′′) = Xh,i(h

′′′) − i. Since less than or equal to i as were inserted
into h′′′ to form hiv, then Xh,i(h

iv) ≤ Xh,i(h
′′) + i. Therefore, Xh,i(h

iv) ≤ Xh,i(h
′′′). This implies that if

Xh,i(h
′′′) ≤ v, Xh,i(h

iv) ≤ v, so Ch,i(h
′′′) ≤ Ch,i(hiv).

Secondly, we must show that most often, the elements of Mi,j(h) do not begin with a.

27



Lemma 46 Given h ∈ Hk
f,a, and h′ = a ◦ . . . ◦ a, where |h′| = i < fa, and h′′ ∈ Hk

f−i1a , where h′′1 6= a, and

h′′′ = h′ ◦ h′′, then for any hiv ∈Mi,fa(h′′′), hiv1 6= a.

Proof: This can be broken down into two cases. First, if count(h′′, a) = 0, then Mi,fa(h′′) = h′′. and so
hiv1 = h′′1 6= a. Secondly if count(h′′, a) > 0, then no as will be inserted before (at least) the first a. In this
case as well, hiv1 6= a.

Of course, if i = fa, there is an element of Mi,fa(h′′′) which starts with a. Therefore, for (h, i) where
i+fa ≤ v, we need a special theorem (Theorem 57) which does not leverage Mi,j directly. Now, if i+fa > v,
then all histories h′ that start with fa as will have Ch,i(h

′) = 0, so there will not be a problem. But, before
we begin, we have to understand Mi,j and the probability mass on various sets of histories.

For h ∈ Hk
f,a, for all h′ ∈ Ins∗fa(h, a), define spliti(h

′, a) to be:

1. 0 if h′ = h and there are no zeros.

2. index of last a in h′ if count(h′, a) < i.

3. index of ith occurrence of a if count(h′, a) ≥ i.

Lemma 47 If fc = 1, then: pc′(w, f − 1c) = pc(w, f)pc′(w, f − 1c) + pc′(w, f)

Proof: Define S =
∑
c′′ 6=c:fc′′ 6=0 wc′ . Then:

pc(w, f)pc′(w, f − 1c) + pc′(w, f) =
wc

wc + S

wc′

S
+

wc′

wc + S
(160)

pc(w, f)pc′(w, f − 1c) + pc′(w, f) =
wc′

wc + S

(wc
S

+ 1
)

(161)

pc(w, f)pc′(w, f − 1c) + pc′(w, f) =
wc′

wc + S

(
wc + S

S

)
(162)

pc(w, f)pc′(w, f − 1c) + pc′(w, f) =
wc′

S
(163)

pc(w, f)pc′(w, f − 1c) + pc′(w, f) = pc′(w, f − 1c). (164)

Lemma 48 If |h| ≥ 1, count(h, c) = 0 and fc = 1, then ph(w, f − 1c) =
∑
h′∈M1,1(h) ph′(w, f), or expanding

the expression, ph(w, f) +
∑|h|
i=1 pIns(h,c,i)(w, f) = ph(w, f − 1c).

Proof: We prove this by induction on the length of h. First, if |h| = 1, then by Lemma 47, we can handle
the base case. Assume that the result holds for k− 1. Choose an arbitrary h′ ∈ Ck−1 where count(h, c) = 0,
and a c′ ∈ C\c. We wish to prove the result holds for h = c′ ◦ h′ = Ins(h′, c′, 1). First, if f ′c = 0, then
ph(w, f) = 0 and for all i ∈ 1, . . . |h|, pIns(h,c,i) = 0. So, without loss of generality, assume fc′ 6= 0.

28



ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = ph(w, f) + pIns(h,c,1)(w, f) +

|h|∑
i=2

pIns(h,c,i)(w, f) (165)

ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = pc′◦h′(w, f) + pc◦h(w, f) +

|h|∑
i=2

pc′◦Ins(h′,c,i−1)(w, f) (166)

ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = pc′◦h′(w, f) + pc◦h(w, f) +

|h|−1∑
i=1

pc′◦Ins(h′,c,i)(w, f) (167)

ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = pc′(w, f)ph′(w, f − 1c
′
) + pc(w, f)ph(w, f − 1c)

+

|h|−1∑
i=1

pc′(w, f)pIns(h′,c,i)(w, f − 1c
′
) (168)

ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = pc(w, f)ph(w, f − 1c) + pc′(w, f)

pc′(w, f) +

|h|−1∑
i=1

pIns(h′,c,i)(w, f − 1c
′
)


(169)

ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = pc(w, f)ph(w, f − 1c) + pc′(w, f)ph′(w, f − 1c
′
) (170)

ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = pc(w, f)pc′(w, f − 1c)ph′(w, f − 1c − 1c
′
) + pc′(w, f)ph′(w, f − 1c

′
) (171)

ph(w, f) +

|h|∑
i=1

pIns(h,c,i)(w, f) = (pc(w, f)pc′(w, f − 1c) + pc′(w, f))ph′(w, f − 1c − 1c
′
) (172)

(173)

By Lemma 47:

|h|∑
i=1

pIns(h,c,i)(w, f) = pc′(w, f − 1c)ph′(w, f − 1c − 1c
′
) (174)

|h|∑
i=1

pIns(h,c,i)(w, f) = pc′◦h′(w, f − 1c) (175)

Lemma 49 For all h ∈ Hk
f,a, for all h′ ∈ Ins∗fa−1(h′, a):

pah′(S) = pa(S)
∑

h′′∈M1,fa (h′)

ph′′(S) (176)

Proof: First, observe that:

pa◦h′(w, f) = pa(w, f)ph′(w, f − 1a) (177)

However, if count(h′, a) ≤ fa − 1, ph′(w, f − 1a) = ph′(w, f). Therefore:

pah′(w, f) = pa(w, f)ph′(w, f). (178)

29



Thus, we can assume without loss of generality that count(h′, a) = fa − 1. Define h′′ = h′1 . . . h
′
last(h′,a), and

h′′′ = h′last(h′,a)+1 . . . h
′
|h′|. Then:

ph′(w, f − 1a) = ph′′(w, f − 1a)ph′′′(w, f − 1a − 1h
′′
) (179)

Define f ′ = f − 1h
′′
. Note that f ′a = 1. Thus, by Lemma 48:

ph′′′(w, f
′ − 1a) =

∑
hiv∈M1,1(h′′′)

phiv (w, f ′) (180)

ph′′′(w, f − 1a − 1h
′′
) =

∑
hiv∈M1,1(h′′′)

phiv (w, f − 1h
′′
) (181)

ph′′(w, f − 1a)ph′′′(w, f − 1a − 1h
′′
) = ph′′(w, f − 1a)

∑
hiv∈M1,1(h′′′)

phiv (w, f − 1h
′′
) (182)

ph′(w, f − 1a) = ph′′(w, f − 1a)
∑

hiv∈M1,1(h′′′)

phiv (w, f − 1h
′′
) (183)

Now, observe that since h′′ ends with an a and count(h′′, a) = fa−1, ph′′(w, f −1a) = ph′′(w, f). Therefore:

ph′(w, f − 1a) = ph′′(w, f)
∑

hiv∈M1,1(h′′′)

phiv (w, f − 1h
′′
) (184)

ph′(w, f − 1a) =
∑

hiv∈M1,1(h′′′)

ph′′◦hiv (w, f) (185)

ph′(w, f − 1a) = ph′′◦h′′′(w, f − 1h
′′
) +

|h′′′|∑
i=1

ph′′◦Ins(h′′′,a,i)(w, f) (186)

ph′(w, f − 1a) =
∑

hiv∈M1,fa (h′)

phiv (w, f) (187)

ph′(w, f − 1a) =
∑

hiv∈M1,fa (h′)

phiv (w, f) (188)

Lemma 50 For all h ∈ Hk
f,a, for all h′ ∈ Ins∗fa(h, a), there exists an h′′ ∈ Ins∗fa−i(h, a) where h′ ∈Mi(h

′′).

Proof: Define h′′ ∈ Ins∗fa−i(h, a) to be a history of length max(count(h′, a), fa − i) + |h| where:

h′′t =

{
h′t if t ≤ splitfa−i(h

′)
ht+|h|−|h′| otherwise

. (189)

Informally, h′′ starts like h′ and ends like h. Note that count(h′′, a) ≤ fa − i. If count(h′′, a) < fa − i,
then count(h′, a) = count(h′′, a), so h′′ = h′ and h′ ∈ Mi(h

′′). If count(h′′, a) = fa − i, then h′ and h′′ are
equal up until splitfa−i(h

′), and then h′ might have more as inserted. So in this case as well, h′ ∈Mi(h
′′).

Lemma 51 For all h ∈ Hk
f,a, for all h′, h′′ ∈ Ins∗fa−i(h, a) where h′ 6= h′′, it is the case that Mi,fa(h′) ∩

Mi,fa(h′′) = ∅.

Corollary 52 {Mi,fa(h′) : h′ ∈ Ins∗fa−i(h, a)} is a partition of Ins∗fa(h, a).

Proof: Note that if v ∈Mi(h
′), then we can recover h′ by the construct in Lemma 50.

Finally, we can apply the corollary three times to get:

30



Lemma 53 For all h ∈ Hk
f,a, for any function g,∑

h′∈Ins∗i(h,a)

g(h′) =
∑

h′′′∈Ins∗fa−i(h,a)

∑
h′′∈Mi,fa (h′′′)

g(h′′) (190)

∑
h′∈Ins∗i(h,a)

g(h′) =
∑

h′′′∈Ins∗fa−i(h,a)

∑
h′′∈Mi−1,fa−1(h′′′)

∑
h′∈M1,fa (h′′)

g(h′) (191)

Proof: Equation 190 is a direct result of Corollary 52, and the fact that, if {Xi}i is a partition of Y ,
then

∑
y∈Y g(y) =

∑
i

∑
x∈Xi

g(x). Moreover, Equation (191) is a product of Corollary 52 and the partition
property both applied twice.

Lemma 54 For S = (w, f), if h′′ = a . . . a, and |h′′| = i ≤ fa, then for all h ∈ Hk
f,a, for all h′ ∈

Ins∗fa−i(h, a):

ph′′◦h′(S) = pa(S)
i

∑
h′′′∈Mi(h′)

ph′′′(S) (192)

Proof: If count(h′, a) < fa − i, then

ph′′◦h′(S) =ph′′(w, f)ph′(w, f − i1a) (193)

=ph′′(w, f)ph′(w, f) (194)

=pa(S)
i

∑
h′′′∈Mi(h′)

ph′′′(()w, f). (195)

Thus, without loss of generality, we can assume that count(h′, a) = fa− i. We prove the result by induction
on i. Observe that for i = 1, the lemma is the same as Lemma 49. Thus, assume that it holds for i − 1.
Then:

pah′(w, f − (i− 1)1a) =
∑

h′′′∈Mi−1,fa (ah′)

ph′′′(w, f) (196)

pa(w, f − (i− 1)1a)ph′(w, f − i1a) =
∑

h′′′∈Mi−1,fa (ah′)

ph′′′(w, f) (197)

pa(w, f − (i− 1)1a)ph′(w, f − i1a) =
∑

h′′′∈Mi−1,fa−1(h′)

pah′′′(w, f) (198)

pa(w, f − (i− 1)1a)ph′(w, f − i1a) = pa(w, f)
∑

h′′′∈Mi−1,fa−1(h′)

ph′′′(w, f − 1a) (199)

Because fa > i− 1, pa(w, f − (i− 1)1a) = pa(w, f), so:

ph′(w, f − i1a) =
∑

h′′′∈Mi−1,fa−1(h′)

ph′′′(w, f − 1a) (200)

By Lemma 49:

ph′(w, f − i1a) =
∑

h′′′∈Mi−1,fa−1(h′)

ph′′′(w, f − 1a) (201)

ph′(w, f − i1a) =
∑

h′′′∈Mi−1,fa−1(h′)

∑
hiv∈M1,fa (h′′′)

phiv (w, f) (202)

By Lemma 53:

ph′(w, f − i1a) =
∑

h′′′∈Mi,fa (h′)

ph′′′(w, f) (203)

31



Theorem 55 If S is a mass model, and if a does not occur in h, then:∑
h′∈Ins∗fa−1(h,a)

pa◦h(S) = pa(S)
∑

h′∈Ins∗fa (h,a)

ph′(S). (204)

Corollary 56

1− pa(S)

pa(S)

∑
h′∈a◦Ins∗fa−1(h,a)

pa◦h′(S) =
∑

h′∈Ins∗1(h,a)\a◦Ins∗fa (h,a)

ph′(S) (205)

Proof: By Lemma 49, for all h′ ∈ Ins∗fa−1(h, a):

pah′(S) = pa(S)
∑

h′′∈M1(h′)

ph′′(S) (206)

∑
h′∈Ins∗fa−1(h,a)

pah′(S) = pa(S)
∑

h′∈Ins∗fa−1(h,a)

∑
h′′∈M1(h′)

ph′′(S) (207)

By Corollary 52: ∑
h′∈Ins∗fa−1(h,a)

pah′(S) = pa(S)
∑

h′∈Ins∗fa (h,a)

ph′(S) (208)

With the lemma proven, the proof of the corollary is straightforward arithmetic.∑
h′∈a◦Ins∗0(h,a)

pa◦h′(S) = pa(S)
∑

h′∈Ins∗1(h,a)

ph′(S) (209)

∑
h′∈a◦Ins∗0(h,a)

pa◦h′(S) = pa(S)
∑

h′∈a◦Ins∗0(h,a)

ph′(S) + pa(S)
∑

h′∈Ins∗1(h,a)\a◦Ins∗0(h,a)

ph′(S) (210)

1− pa(S)

pa(S)

∑
h′∈a◦Ins∗0(h,a)

pa◦h′(S) =
∑

h′∈Ins∗1(h,a)\a◦Ins∗0(h,a)

ph′(S) (211)

Theorem 57 If i+ fa ≤ v, then ∆h,i = 0.

Proof: Note that if i + fa ≤ v, then for any h′ ∈ Ins∗fa(h, a) = {h}, Ch,i(h′) = 1. Thus, what is left to
show is that

∑
h′∈Ins∗fa (h,a) ph′(S) and

∑
h′∈Ins∗fa (h,a) ph′(S

′) are equal:
So, we can write:

∆h,i =
∑

h′∈Ins∗fa (h,a)

(ph′(S
′)− ph′(S))Ch,i(h

′) (212)

=
∑

h′∈Ins∗fa (h,a)

(ph′(S
′)− ph′(S)) (213)

=
∑

h′∈a◦Ins∗fa−1(h,a)

(ph′(S
′)− ph′(S)) +

∑
h′∈Ins∗fa (h,a)\a◦Ins∗fa−1(h,a)

(ph′(S
′)− ph′(S)) (214)

=
∑

h′∈a◦Ins∗fa−1(h,a)

(αph′(S)− ph′(S)) +
∑

h′∈Ins∗fa (h,a)\a◦Ins∗fa−1(h,a)

(βph′(S)− ph′(S)) (215)

= (α− 1)
∑

h′∈a◦Ins∗fa−1(h,a)

ph′(S) + (β − 1)
∑

h′∈Ins∗fa (h,a)\a◦Ins∗fa−1(h,a)

ph′(S) (216)

(217)

32



By Corollary 56:

∆h,i = (α− 1)
∑

h′∈a◦Ins∗fa−1(h,a)

ph′(S) + (β − 1)
1− pa(S)

pa(S)

∑
h′∈a◦Ins∗fa−1(h,a)

ph′(S) (218)

∆h,i =

(
α− 1 + (β − 1)

1− pa(S)

pa(S)

) ∑
h′∈a◦Ins∗fa−1(h,a)

ph′(S) (219)

=

(
α− 1 + β

1− pa(S)

pa(S)
− 1− pa(S)

pa(S)

) ∑
h′∈a◦Ins∗fa−1(h,a)

ph′(S) (220)

By the definition of β, β(1− pa(S)) = 1− αpa(S), so:

∆h,i =

(
α− 1 +

1− αpa(S)

pa(S)
− 1− pa(S)

pa(S)

) ∑
h′∈a◦Ins∗fa−1(h,a)

ph′(S). (221)

∆h,i = 0. (222)

Theorem 58 If i+ fa > v, then ∆h,i ≤ 0.

Proof: First, define T = {h′ ∈ Ins∗fa(h, a) : h′1 = a,Ch,i(h
′) = 1}. Define T ′ = {h′ ∈ Ins∗fa(h, a) : h′1 6=

a,Ch,i(h
′) = 1}. Therefore:

∆h,i =
∑

h′∈Ins∗fa (h,a)

(ph′(S
′)− ph′(S))Ch,i(h

′) (223)

=
∑
h′∈T

(ph′(S
′)− ph′(S)) +

∑
h′∈T ′

(ph′(S
′)− ph′(S)) (224)

Since each history in T begins with a, and each history in T ′ does not begin with a:

∆h,i =
∑
h′∈T

(αph′(S)− ph′(S)) +
∑
h′∈T ′

(βph′(S)− ph′(S)) (225)

∆h,i =(α− 1)
∑
h′∈T

ph′(S) + (β − 1)
∑
h′∈T ′

ph′(S) (226)

So, we need to measure the relative sizes of the probability mass in T and T ′. First, we split T into T1,
T2, T3, such that h′ ∈ T is in Tm if hj = a if j ≤ m and hj+1 6= a. Thus, for any h′ ∈ Tm, we can break it
down into h′′ = a ◦ . . . ◦ a, where |h′′| = m, and h′′′ = h′m+1 . . . h

′
|h′|. Define suffix(h′, j) = h′j . . . h

′
|h′|, so that

h′′′ = suffix(h′,m). Note that since Ch,i(h
′′′) = 1 and i > v−fa, m < fa, so by Lemma 46, Mm,fa(h′′′) ⊆ T ′.

Moreover, given a second history h̃′ ∈ Tm, we know from 51 thatMm,fa(suffix(h′,m))∩Mm,fa(suffix(h̃′,m)) =
∅, so: ∑

h′∈T ′
ph′(S) ≥

∑
h′∈Tm

∑
h′′∈Mm,fa (suffix(h′,m))

ph′′(S). (227)

Now, from Lemma 54, ph′(S) = (pa(S))m
∑
h′′∈Mm,fa (suffix(h′,m)) ph′′(S), so:

∑
h′∈T ′

ph′(S) ≥
∑
h′∈Tm

ph′(S)

(pa(S))m
(228)

(pa(S))m
∑
h′∈T ′

ph′(S) ≥
∑
h′∈Tm

ph′(S) (229)

33



Since T1 . . . Tfa−1 is a partition of T :

∆h,i =(α− 1)

fa−1∑
m=1

∑
h′∈Tm

ph′(S) + (β − 1)
∑
h′∈T ′

ph′(S) (230)

∆h,i ≤(α− 1)

fa−1∑
m=1

(pa(S))m
∑
h′∈T ′

ph′(S) + (β − 1)
∑
h′∈T ′

ph′(S) (231)

∆h,i ≤

(
(β − 1) + (α− 1)

fa−1∑
m=1

(pa(S))m

) ∑
h′∈T ′

ph′(S) (232)

∆h,i ≤
(

(β − 1) + (α− 1)
pa(S)− (pa(S))m+1

1− pa(S)

) ∑
h′∈T ′

ph′(S) (233)

∆h,i ≤
(

(β − 1) + (α− 1)
pa(S)

1− pa(S)

) ∑
h′∈T ′

ph′(S) (234)

∆h,i ≤
(

(β − 1) + α
pa(S)

1− pa(S)
− pa(S)

1− pa(S)

) ∑
h′∈T ′

ph′(S) (235)

From this point, we continue in a way similar to Equation (219). By the definition of β, α(pa(S)) =
1− β(1− pa(S)), so:

∆h,i ≤
(

(β − 1) +
1− β(1− pa(S))

1− pa(S)
− pa(S)

1− pa(S)

) ∑
h′∈T ′

ph′(S) (236)

∆h,i ≤
(

(β − 1) +
(1− β)(1− pS(a))

1− pa(S)

) ∑
h′∈T ′

ph′(S) (237)

∆h,i ≤ ((β − 1) + (1− β))
∑
h′∈T ′

ph′(S) (238)

∆h,i ≤0×
∑
h′∈T ′

ph′(S) (239)

∆h,i ≤0 (240)

Theorem 59 If a′ 6= a, then aka′(S
′) ≤ aka′(S).

Proof: Since aka′(S
′) ≤ aka′(S) = ∆a′ =

∑
(h,i)∈A ∆h,i, and by Theorem 57 and Theorem 58, ∆h,i ≤ 0, so

therefore ∆a′ ≤ 0, and the theorem follows.

Theorem 60 If a, a′ ∈ C, a′ 6= a, and for all wc = vc when c 6= a, and va = αwa with α ≥ 1, then
aka′(v, f) ≤ ak(w, f).

Proof: We prove this by induction on k. First observe that a0 = 0, so it holds for k = 0. For k > 0:

aka′(v, f) = pa′(v, f) +
∑

c∈C:fc 6=0

pc(v, f)ak−1
a′ (v, f − 1c). (241)

By induction:

aka′(v, f) ≤ pa′(v, f) +
∑

c∈C:fc 6=0

pc(v, f)ak−1
a′ (w, f − 1c). (242)

34



Observe that pa′(v, f) +
∑
c∈C:fc 6=0 pc(v, f)ak−1

a′ (w, f − 1c) = aka′(S
′). So therefore,

aka′(v, f) ≤ aka′(S′) (243)

aka′(v, f) ≤ aka′(S) (244)

aka′(v, f) ≤ aka′(w, f) (245)

Proof (of Lemma 16): First, observe that the problem can be separated into individual users by Theo-
rem 11. Moreover, by Lemma 25, a represents the model of a user, given some values of f and k. Therefore,
we need only prove properties of akc .

Theorem 60 establishes well-behaved property 1. Lemma 39 establishes well-behaved property 3. Lemma 36
establishes well-behaved property 2. Lemma 33 establishes well-behaved property 4.

35


