
Computing Robust Counter-Strategies

Michael Johanson
johanson@cs.ualberta.ca

Martin Zinkevich
maz@cs.ualberta.ca

Michael Bowling
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G2E8

textttbowling@cs.ualberta.ca

Abstract

Adaptation to other initially unknown agents often requires computing an effec-
tive counter-strategy. In the Bayesian paradigm, one must find a good counter-
strategy to the inferred posterior of the other agents’ behavior. In the experts
paradigm, one may want to choose experts that are good counter-strategies to
the other agents’ expected behavior. In this paper we introduce a technique for
computing robust counter-strategies for adaptation in multiagent scenarios under
a variety of paradigms. The strategies can take advantage of a suspected tendency
in the decisions of the other agents, while bounding the worst-case performance
when the tendency is not observed. The technique involves solving a modified
game, and therefore can make use of recently developed algorithms for solving
very large extensive games. We demonstrate the effectiveness of the technique in
two-player Texas Hold’em. We show that the computed poker strategies are sub-
stantially more robust than best response counter-strategies, while still exploiting
a suspected tendency. We also compose the generated strategies in an experts al-
gorithm showing a dramatic improvement in performance over using simple best
responses.

1 Introduction

Many applications for autonomous decision making (e.g., assistive technologies, electronic com-
merce, interactive entertainment) involve other agents interacting in the same environment. The
agents’ choices are often not independent, and good performance may necessitate adapting to the
behavior of the other agents. A number of paradigms have been proposed for adaptive decision
making in multiagent scenarios. The agent modeling paradigm proposes to learn a predictive model
of other agents’ behavior from observations of their decisions. The model is then used to compute
or select a counter-strategy that will perform well given the model. An alternative paradigm is the
mixture of experts. In this approach, a set of expert strategies is identified a priori. These experts
can be thought of as counter-strategies for the range of expected tendencies in the other agents’
behavior. The decision maker, then, chooses amongst the counter-strategies based on their online
performance, commonly using techniques for regret minimization (e.g., UCB1 [ACBF02]). In either
approach, finding counter-strategies is an important subcomponent.

The most common approach to choosing a counter-strategy is best response: the performance maxi-
mizing strategy if the other agents’ behavior is known [Rob51, CM96]. In large domains where best
response computations are not tractable, they are often approximated with “good responses” from a
computationally tractable set, where performance maximization remains the only criterion [RV02].

1

The problem with this approach is that best response strategies can be very brittle. While max-
imizing performance against the model, they can (and often do) perform poorly when the model
is wrong. The use of best response counter-strategies, therefore, puts an impossible burden on a
priori choices, either the agent model bias or the set of expert counter-strategies. McCracken and
Bowling [MB04] proposed ε-safe strategies to address this issue. Their technique chooses the best
performance maximizing strategy from the set of strategies that don’t lose more than ε in the worst-
case. The strategy balances exploiting the agent model with a safety guarantee in case the model is
wrong. Although conceptually appealing, it is computationally infeasible even for moderately sized
domains and has only been employed in the simple game of Ro-Sham-Bo.

In this paper, we introduce a new technique for computing robust counter-strategies. The counter-
strategies, called restricted Nash responses, balance performance maximization against the model
with reasonable performance even when the model is wrong. The technique involves computing a
Nash equilibrium of a modified game, and therefore can exploit recent advances in solving large ex-
tensive games [GHPS07, ZBB07]. We demonstrate the practicality of the approach in the challeng-
ing domain of poker. We begin by reviewing the concepts of extensive form games, best responses,
and Nash equilibria, as well as describing how these concepts apply in the poker domain. We then
describe a technique for computing an approximate best response to an arbitrary poker strategy, and
show that this, indeed, produces brittle counter-strategies. We then introduce restricted Nash re-
sponses, describe how they can be computed efficiently, and show that they are significantly more
robust while still being effective counter-strategies. Finally, we demonstrate that these strategies can
be used in an experts algorithm to make a more effective adaptive player than when using simple
best response.

2 Background

A perfect information extensive game consists of a tree of game states. At each game state, an
action is made either by nature, or by one of the players, or the state is a terminal state where each
player receives a fixed utility. A strategy for a player consists of a distribution over actions for every
game state. In an imperfect information extensive game, the states where a player makes an action
are divided into information sets. When a player chooses an action, it does not know the state of
the game, only the information set, and therefore its strategy is a mapping from information sets
to distributions over actions. A common restriction on imperfect information extensive games is
perfect recall, where two states can only be in the same information set for a player if that player
took the same actions from the same information sets to reach the two game states. In the remainder
of the paper, we will be considering imperfect information extensive games with perfect recall.

Let σi be a strategy for player i where σi(I, a) is the probability that strategy assigns to action a in
information set I . Let Σi be the set of strategies for player i, and define ui(σ1, σ2) to be the expected
utility of player i if player 1 uses σ1 ∈ Σ1 and player 2 uses σ2 ∈ Σ2. Define BR(σ2) ⊆ Σ1 to be
the set of best responses to σ2, i.e.:

BR(σ2) = argmax
σ1∈Σ1

u1(σ1, σ2) (1)

and define BR(σ1) ⊆ Σ2 similarly. If σ1 ∈ BR(σ2) and σ2 ∈ BR(σ1), then (σ1, σ2) is a Nash
equilibrium. A zero-sum extensive game is an extensive game where u1 = −u2. In this type of
game, for any two equilibria (σ1, σ2) and (σ′1, σ

′
2), u1(σ1, σ2) = u1(σ′1, σ

′
2) and (σ1, σ

′
2) (as well as

(σ′1, σ2)) are also equilibria. Define the value of the game to player 1 (v1) to be the expected utility
of player 1 in equilibrium. In a zero-sum extensive game, the exploitability of a strategy σ1 ∈ Σ1

is:
ex(σ1) = max

σ2∈Σ2
(v1 − u1(σ1, σ2)). (2)

The value of the game to player 2 (v2) and the exploitability of a strategy σ2 ∈ Σ2 are defined
similarly. A strategy which can be exploited for no more than ε is ε-safe. An ε-Nash equilibrium
in a zero-sum extensive game is a strategy pair where both strategies are ε-safe.

In the remainder of the work, we will be dealing with mixing two strategies. Informally, one can
think of mixing two strategies as performing the following operation: first, flip a (possibly biased)
coin; if it comes up heads, use the first strategy, otherwise use the second strategy. Formally, define
πσi(I) to be the probability that player iwhen following strategy σi chooses the actions necessary to

2

make information set I reachable from the root of the game tree. Given σ1, σ
′
1 ∈ Σ1 and p ∈ [0, 1],

define mixp(σ1, σ
′
1) ∈ Σ1 such that for any information set I of player 1, for all actions a:

mixp(σ1, σ
′
1)(I, a) =

p× πσ1(I)σ1(I, a) + (1− p)× πσ′
1(I)σ1(I, a)

p× πσ1(I) + (1− p)× πσ′
1(I)

. (3)

Given an event E, define Prσ1,σ2 [E] to be the probability of the event E given player 1 uses σ1,
and player 2 uses σ2. Given the above definition of mix, it is the case that for all σ1, σ

′
1 ∈ Σ1, all

σ2 ∈ Σ2, all p ∈ [0, 1], and all events E:

Pr
mixp(σ1,σ′

1),σ2

[E] = p Pr
σ1,σ2

[E] + (1− p) Pr
σ′
1,σ2

[E] (4)

So probabilities of outcomes can simply be combined linearly. As a result the utility of a mixture of
strategies is just u(mixp(σ1, σ

′
1), σ2) = pu(σ1, σ2) + (1− p)u(σ′1, σ2).

3 Texas Hold’Em

While the techniques in this paper apply to general extensive games, our empirical results will focus
on the domain of poker. In particular, we look at heads-up limit Texas Hold’em, the game used in
the AAAI Computer Poker Competition [ZL06]. A single hand of this poker variant consists of two
players each being dealt two private cards, followed by five community cards being revealed. Each
player tries to form the best five-card poker hand from the community cards and her private cards:
if the hand goes to a showdown, the player with the best five-card hand wins the pot. The key to
good play is on average to have more chips in the pot when you win than are in the pot when you
lose. The players’ actions control the pot size through betting. After the private cards are dealt, a
round of betting occurs, followed by additional betting rounds after the third (flop), fourth (turn),
and fifth (river) community cards are revealed. Betting rounds involve players alternately deciding
to either fold (letting the other player win the chips in the pot), call (matching the opponent’s chips
in the pot), or raise (matching, and then adding an additional fixed amount into the pot). No more
than four raises are allowed in a single betting round. Notice that heads-up limit Texas Hold’em is
an example of a finite imperfect information extensive game with perfect recall. When evaluating
the results of a match (several hands of poker) between two players, we find it convenient to state
the result in millibets won per hand. A millibet is one thousandth of a small-bet, the fixed magnitude
of bets used in the first two rounds of betting. To provide some intuition for these numbers, a player
that always folds will lose 750 mb/h while a typical player that is 10 mb/h stronger than another
would require over one million hands to be 95% certain to have won overall.

Abstraction. While being a relatively small variant of poker, the game tree for heads-up limit
Texas Hold’em is still very large, having approximately 9.17×1017 states. Fundamental operations,
such as computing a best response strategy or a Nash equilibrium as described in Section 2, are
intractable on the full game. Common practice is to define a more reasonably sized abstraction by
merging information sets (e.g., by treating certain hands as indistinguishable). If the abstraction
involves the same betting structure, a strategy for an abstract game can be played directly in the full
game. If the abstraction is small enough Nash equilibria and best response computations become
feasible. Finding an approximate Nash equilibrium in an abstract game has proven to be an effective
way to construct a strong program for the full game [BBD+03, GS06]. Recent solution techniques
have been able to compute approximate Nash equilibria for abstractions with as many as 1010 game
states [ZBB07, GHPS07]. Given a strategy defined in a small enough abstraction, it is also possible
to compute a best response to the strategy in the abstract game. This can be done in time linear in
the size of the extensive game.

Hand Strength Squared Abstraction. The techniques in this paper involve finding approximate
Nash equilibria and computing best responses. As such, we will need to specify a particular poker
abstraction to make these operations tractable. We group (partial) card sequences (the combination
of a player’s private and public cards) into a small number of buckets based on a metric called
hand strength squared, a metric mapping each card sequence to a number between 0 and 1 which
is based on hand strength and is described in the appendix. We construct an abstraction with this
metric by partitioning card sequences into bucket sequences. First, all round-one card sequences
(i.e., all private card pairs) are partitioned into five equally sized buckets based upon the metric.

3

Then, all round-two card sequences that shared a round-one bucket are partitioned into five equally
sized buckets based on the metric now applied at round two. Thus, a partition of card sequences in
round two is a pair of numbers: its bucket in the previous round and its bucket in the current round
given its bucket in the previous round. This is repeated after each round, continuing to partition card
sequences that agreed on the previous rounds’ buckets into five equally sized buckets based on the
metric applied in that round. The resulting abstract game has approximately 6.45×109 game states.
This is the abstraction used throughout the paper.

The Competitors. Since this work focuses on adapting to other agents’ behavior, our experiments
make use of a battery of different poker playing programs. We give a brief description of these pro-
grams here. Opti4 [BBD+03] is one of the earliest successful near equilibrium programs for poker
and is available as “Sparbot” in the commercial title Poker Academy. Opti6 is a later and weaker
variant, but whose weaknesses are thought to be less obvious to human players. Together, Opti4 and
Opti6 formed Hyperborean, the winner of the AAAI 2006 Computer Poker Competition. S1239,
S1399, and S2298 are similar near equilibrium strategies generated by a new equilibrium computa-
tion method [ZBB07] using a much larger abstraction than is used in Opti4 and Opti6. The abstrac-
tion is similar to the one described above but uses hand strength instead of hand strength squared.
A60 and A80 are two past failed attempts at generating interesting exploitive strategies, and are
highly exploitable for over 1000 mb/h. NEQ is a new, near Nash equilibrium in the abstraction de-
scribed previously. We will also experiment with two programs Bluffbot and Monash, who placed
second and third respectively in the AAAI 2006 Computer Poker Bankroll Competition [ZL06].

4 Frequentist Best Response

In the introduction, we described best response counter-strategies as brittle, performing poorly when
playing against a different strategy from the one which they were computed to exploit. In this sec-
tion, we examine this claim empirically in the domain of poker. Since a best response computation
is intractable in the full game, we first describe a technique, called frequentist best response, for
finding a “good response” using an abstract game. As described in the previous section, given a
strategy in an abstract game we can compute a best response to that strategy within the abstraction.
The challenge is that the abstraction used by an arbitrary opponent is not known. In addition, it may
be beneficial to find a best response in an alternative, possible more powerful, abstraction.

Suppose we want to find a “good response” to some strategy P. The basic idea of frequentist best
response (FBR) is to observe P playing the full game of poker, construct a model of it in an abstract
game (unrelated to that P’s own abstraction), and then compute a best-response in this abstraction.
FBR first needs many examples of the strategy playing the full, unabstracted game. It then iterates
through every one of P’s actions for every hand. It finds the action’s associated information set in
the abstract game and increments a counter associated with that information set and action. After
observing a sufficient number of hands, we can construct a strategy in the abstract game based on
the frequency counts. At each information set, we set the strategy’s probability for performing each
action to be the number of observations of that action being chosen from that information set, divided
by the total number of observations in the information set. If an information set was never observed,
the strategy defaults to the call action. Since this strategy is defined in a known abstraction, FBR
can simply calculate a best response to this frequentist strategy.

P’s opponent in the observed games greatly affects the quality of the model. We have found it
most effective to have P play against a trivial strategy that calls and raises with equal probability.
This provides with us the most observations of P’s decisions that are well distributed throughout
the possible betting sequences. Observing P in self-play or against near equilibrium strategies has
shown to require considerably more observed hands. We typically use 5 million hands of training
data to compute the model strategy, although reasonable responses can still be computed with as few
as 1 million hands.

Evaluation. We computed frequentist best response strategies against seven different opponents.
We played the resulting responses both against the opponent it was designed to exploit as well as the
other six opponents and an approximate equilibrium strategy computed using the same abstraction.
The results of this tournament are shown as a crosstable in Table 1. Positive numbers (appearing
with a green background) are in favor of the row player (FBR strategies, in this case).

4

Opponents
Opti4 Opti6 A60 A80 S1239 S1399 S2298 NEQ Average

FBR-Opti4 137 -163 -227 -231 -106 -85 -144 -210 -129
FBR-Opti6 -79 330 -68 -89 -36 -23 -48 -97 -14

FBR-A60 -442 -499 2170 -701 -359 -305 -377 -620 -142
FBR-A80 -312 -281 -557 1048 -251 -231 -266 -331 -148

FBR-S1239 -20 105 -89 -42 106 91 -32 -87 3
FBR-S1399 -43 38 -48 -77 75 118 -46 -109 -11
FBR-S2298 -39 51 -50 -26 42 50 33 -41 2

NEQ 36 123 93 41 70 68 17 0 56
Max 137 330 2170 1048 106 118 33 0

Table 1: Results of frequentist best responses (FBR) against a variety of opponent programs in full
Texas Hold’em, with winnings in mb/h for the row player. Results involving Opti4 or Opti6 used 10
duplicate matches of 10,000 hands and are significant to 20 mb/h. Other results used 10 duplicate
matches of 500,000 hands and are significant to 2 mb/h.

The first thing to notice is that FBR is very successful at exploiting the opponent it was designed to
exploit, i.e., the diagonal of the crosstable is positive and often large. In some cases, FBR identified
strategies exploiting the opponent for more than previously known to be possible, e.g., Opti4 had
only previously been exploited for 75 mb/h [Sch06], while FBR exploits it for 137 mb/h. The second
thing to notice is that when FBR strategies play against other opponents their performance is poor,
i.e., the off-diagonal of the crosstable is generally negative and occasionally by a large amount. For
example, A60 is not a strong program. It is exploitable for over 2000 mb/h (note that always fold
only loses 750 mb/h) and an approximate equilibrium strategy defeats it by 93 mb/h. Yet, every FBR
strategy besides the one trained on it, loses to it, sometimes by a substantial amount. These results
give evidence that best response is, in practice, a brittle computation, and can perform poorly when
the model is wrong.

One exception to this trend is play within the family of S-bots. In particular, consider S1399 and
S1239, which are very similar programs, using the same technique for equilibrium computation with
the same abstract game. They only differ in the number of iterations the algorithm was afforded. The
results show they do share weaknesses as FBR-S1399 does beat S1239 by 75 mb/h. However, this
is 30% less than 106 mb/h the amount that FBR-S1239 beats the same opponent. Considering the
similarity of these opponents, even this apparent exception is actually suggestive that best response
is not robust to even slight changes in the model.

Finally, consider the performance of the approximate equilibrium player, NEQ. As it was computed
from a relatively large abstraction it performs comparably well, not losing to any of the seven oppo-
nents. However, it also does not win by the margins of the correct FBR strategy. As noted, against
the highly exploitable A60, it wins by a mere 93 mb/h. What we really want is a compromise.
We would like a strategy that can exploit an opponent successfully like FBR, but without the large
penalty when playing against a different opponent. The remainder of the paper examines Restricted
Nash Response, a technique for creating such strategies.

5 Restricted Nash Response

Imagine that you had a model of your opponent, but did not believe that this model was perfect.
The model may capture the general idea of the adversary you expect to face, but most likely is not
identical. For example, maybe you have played a previous version of the same program, have a
model of its play, but suspect that the designer is likely to have made some small improvements in
the new version. One way to explicitly define our situation is that with the new version we might
expect that 75 percent of the hands will be played identically to the old version. The other 25 percent
is some new modification, for which we want to be robust. This, in itself, can be thought of as a
game for which we can apply the usual game theoretic machinery of equilibria.

Let our model of our opponent be some strategy σfix ∈ Σ2. Define Σp,σfix
2 to be those strategies of

the form mixp(σfix, σ
′
2), where σ′2 is an arbitrary strategy in Σ2. Define the set of restricted best

5

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xp

lo
ita

tio
n

(m
b/

h)

Exploitability (mb/h)

(0.00)

(0.50)

(0.75)
(0.82)
(0.85)

(0.90)

(0.95)

(0.99) (1.00)

(a) Versus Opti4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

E
xp

lo
ita

tio
n

(m
b/

h)

Exploitability (mb/h)

(0.00)

(0.25)
(0.40)
(0.45)
(0.50)
(0.55)
(0.60)

(0.80)

(0.90)
(0.95) (1.00)

(b) Versus A80

Figure 1: The tradeoff between ε and utility. For each opponent, we varied p ∈ [0, 1] for the RNR.
The labels at each datapoint indicate the value of p used.

responses to σ1 ∈ Σ1 to be:

BRp,σfix∈Σ2(σ1) = argmax
σ2∈Σp,σfix

u2(σ1, σ2) (5)

A (p, σfix) restricted Nash equilibrium is a pair of strategies (σ∗1 , σ
∗
2) where σ∗2 ∈ BRp,σfix(σ∗1)

and σ∗1 ∈ BR(σ∗2). In this pair, the strategy σ∗1 is a p-restricted Nash response (RNR) to σfix. We
propose these RNRs would be ideal counter-strategies for σfix, where p provides a balance between
exploitation and exploitability. This concept is closely related to ε-safe best responses [MB04].
Define Σε-safe

1 ⊆ Σ1 to be the set of all strategies which are ε-safe (with an exploitability less than
ε). Then the set of ε-safe best responses are:

BRε-safe(σ2) = argmax
σ1∈Σε-safe

u1(σ1, σ2) (6)

Theorem 1 For all σ2 ∈ Σ2, for all p ∈ (0, 1], if σ1 is a p-RNR to σ2, then there exists an ε such
that σ1 is an ε-safe best response to σ2.

The proof is in the supporting material accompanying this submission. It will be made available in
a companion technical report if this paper is accepted for publication.

Unlike safe best responses, a RNR can be computed by just solving a modification of the original
abstract game. For example, if using a sequence form representation of linear programming then
one just needs to add lower bound constraints for the restricted player’s realization plan probabili-
ties. In our experiments we use a recently developed solution technique based on regret minimiza-
tion [ZJBP08] with a modified game that starts with an unobserved chance node deciding whether
the restricted player is forced to use strategy σfix on the current hand. The RNRs used in our experi-
ments were computed with less than a day of computation on a 2.4Ghz AMD Opteron.

Choosing p. In order to compute a RNR we have to choose a value of p. By varying the value
p ∈ [0, 1], we can produce poker strategies that are closer to a Nash equilibrium (when p is near 0) or
are closer to the best response (when p is near 1). When producing an RNR to a particular opponent,
it is useful to consider the tradeoff between the utility of the response against that opponent and the
exploitability of the response itself. We explore this tradeoff in Figure 1. In 1a we plot the results of
using RNR with various values of p against the model of Opti4. The x-axis shows the exploitability
of the response, ε. The y-axis shows the exploitation of the model by the response in the abstract
game. Note that the actual exploitation and exploitability in the full game may be different, as we
explore later. Figure 1b shows this tradeoff against A80.

Notice that by selecting values of p, we can control the tradeoff between ε and the response’s ex-
ploitation of the strategy. More importantly, the curves are highly concave meaning that dramatic
reductions in exploitability can be achieved with only a small sacrifice in the ability to exploit the
model.

6

Opponents
Opti4 Opti6 A60 A80 S1239 S1399 S2298 NEQ Average

RNR-Opti4 85 112 39 9 63 61 -1 -23 43
RNR-Opti6 26 234 72 34 59 59 1 -28 57

RNR-A60 -17 63 582 -22 37 39 -9 -45 78
RNR-A80 -7 66 22 293 11 12 0 -29 46

RNR-S1239 38 130 68 31 111 106 9 -20 59
RNR-S1399 31 136 66 29 105 112 6 -24 58
RNR-S2298 21 137 72 30 77 76 31 -11 54

NEQ 36 123 93 41 70 68 17 0 56
Max 85 234 582 293 111 112 31 0

Table 2: Results of restriced Nash response (RNR) against a variety of opponent programs in full
Texas Hold’em, with winnings in mb/h for the row player. See the caption of Table 1 for match
details.

Evaluation. We used RNR to compute a counter-strategy to same seven opponents used in the
FBR experiments, with the p value used for each opponent selected such that the resulting ε is close
to 100 mb/h. The RNR strategies were played against these seven opponents and the equilibrium
NEQ in the full game of Texas Hold’em. The results of this tournament are displayed as a crosstable
in Table 2.

The first thing to notice is that RNR is capable of exploiting the opponent for which it was designed
as a counter-strategy, while still performing well against the other opponents. In other words, not
only is the diagonal positive and large, most of the crosstable is positive. For the highly exploitable
opponents, such as A60 and A80, the degree of exploitation is much reduced from FBR, which is
a consequence of choosing p such that ε is 100 mb/h. Notice, though, that it does exploit these
opponents significantly more than the approximate Nash strategy (NEQ).

Revisiting the family of S-bots, we notice that the known similarity of S1239 and S1399 is more
apparent with RNR. The performance of RNR with the correct model against these two players is
close to that of FBR, while the performance with the similar model is only a 6mb/h drop. Essentially,
RNR is forced to exploit only the weaknesses that are general and is robust to small changes. Overall,
RNR offers a similar degree of exploitation to FBR, but with far more robustness.

6 Restricted Nash Experts

We have shown that RNR can be used to find robust counter-strategies. In this section we investigate
their use in an adaptive poker program. We generated four counter-strategies based on the opponents
Opti4, A80, S1399, and S2298, and then used these as experts which UCB1 [ACBF02] (a regret
minimizing algorithm) selected amongst. The FBR-experts algorithm used a FBR to each opponent,
and the RNR-experts used RNR to each opponent. We then played these two expert mixtures in
1000 hand matches against both the four programs used to generate the counter strategies as well as
two programs from the 2006 AAAI Computer Poker Competition, which have an unknown origin
and were developed independently of the other programs. We call the first four programs “training
opponents” and the other two programs “holdout opponents”, as they are similar to training error
and holdout error in supervised learning.

The results of these matches are shown in Figure 2. As expected, when the opponent matches one of
the training models, FBR-experts and RNR-experts perform better, on average, than a near equilib-
rium strategy (see “Training Average” in Figure 2). However, if we look at the break down against
individual opponents, we see that all of FBR’s performance comes from its ability to significantly
exploit one single opponent. Against the other opponents, it actually performs worse than the non-
adaptive near equilibrium strategy. RNR does not exploit A80 to the same degree as FBR, but also
does not lose to any opponent.

The comparison with the holdout opponents, though, is more realistic and more telling. Since it
is unlikely a player will have a model of the exact program its likely to face in a competition,
it is important for its counter-strategies to exploit general weaknesses that might be encountered.
Our holdout programs have no explicit relationship to the training programs, yet the RNR counter-

7

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

Opti4 S1399 S2298 A80 Training
Average

BluffBot Monash Holdout
Average

P
er

fo
rm

an
ce

 (
m

b/
h)

FBR Experts
RNR Experts

5555hs2

Figure 2: Performance of FBR-experts, RNR-experts, and a near Nash equilibrium strategy (NEQ)
against “training” opponents and “hold out” opponents in 50 duplicate matches of 1000 hands.

strategies are still effective at exploiting these programs as demonstrated by the expert mixture
being able to exploit these programs by more than the near equilibrium strategy. The FBR counter-
strategies, on the other hand, performed poorly outside of the training programs, demonstrating once
again that RNR counter-strategies are both more robust and more suitable as a basis for adapting
behavior to other agents in the environment.

7 Conclusion

We proposed a new technique for generating robust counter-strategies in multiagent scenarios. The
restricted Nash responses balance exploiting suspected tendencies in other agents’ behavior, while
bounding the worst-case performance when the tendency is not observed. The technique involves
computing an approximate equilibrium to a modification of the original game, and therefore can
make use of recently developed algorithms for solving very large extensive games. We demon-
strated the technique in the domain of poker, showing it to generate more robust counter-strategies
than traditional best response. We also showed that a simple mixture of experts algorithm based on
restricted Nash response counter-strategies was far superior to using best response counter-strategies
if the exact opponent was not used in training. Further, the restricted Nash experts algorithm outper-
formed a static non-adaptive near equilibrium at exploiting the previously unseen programs.

References
[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multiarmed bandit problem.

Machine Learning, 47:235–256, 2002.

[BBD+03] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg, and D. Szafron. Ap-
proximating game-theoretic optimal strategies for full-scale poker. In International Joint Confer-
ence on Artificial Intelligence, pages 661–668, 2003.

[CM96] David Carmel and Shaul Markovitch. Learning models of intelligent agents. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, Menlo Park, CA, 1996. AAAI Press.

[GHPS07] A. Gilpin, S. Hoda, J. Pena, and T. Sandholm. Gradient-based algorithms for finding nash equilibria
in extensive form games. In Proceedings of the Eighteenth International Conference on Game
Theory, 2007.

[GS06] A. Gilpin and T. Sandholm. A competitive texas hold’em poker player via automated abstraction
and real-time equilibrium computation. In National Conference on Artificial Intelligence, 2006.

[MB04] Peter McCracken and Michael Bowling. Safe strategies for agent modelling in games. In AAAI
Fall Symposium on Artificial Multi-agent Learning, October 2004.

[Rob51] Julia Robinson. An iterative method of solving a game. Annals of Mathematics, 54:296–301, 1951.

[RV02] Patrick Riley and Manuela Veloso. Planning for distributed execution through use of probabilis-
tic opponent models. In Proceedings of the Sixth International Conference on AI Planning and
Scheduling, pages 77–82, April 2002.

[Sch06] T.C. Schauenberg. Opponent Modellign and Search in Poker. PhD thesis, University of Alberta,
2006.

8

[ZBB07] M. Zinkevich, M. Bowling, and N. Burch. A new algorithm for generating strong strategies in mas-
sive zero-sum games. In Proceedings of the Twenty-Seventh Conference on Artificial Intelligence
(AAAI), 2007. To Appear.

[ZJBP08] M. Zinkevich, M. Johason, M. Bowling, and C. Piccione. Regret minimization in games with
incomplete information. In Neural Information Processing Systems 21, 2008.

[ZL06] M. Zinkevich and M. Littman. The AAAI computer poker competition. Journal of the International
Computer Games Association, 29, 2006. News item.

A Appendix

A.1 Proof of Theorem 1

Proof (of Theorem 1): If p = 1, then σ1 is a best response to σ2. Thus, for a sufficiently large ε, it is also an
ε-safe best response to σ2.

Otherwise, assume that p < 1 and define ε = ex(σ1). We will prove that σ1 is an ε-safe best response to
σ2. Since σ1 is p-restricted Nash response to σ2, by definition there is a strategy σ′2 such that (σ1, σ

′
2) is a

(p, σ2)-restricted Nash equilibrium. Moreover, there is a strategy σ′′2 such that mixp(σ2, σ
′′
2) = σ′2. Observe

that:

σ′′2 ∈ argmax
σ′′′
2 ∈Σ2

u2(σ1,mixp(σ2, σ
′′′
2)) (7)

σ′′2 ∈ argmax
σ′′′
2 ∈Σ2

(pu2(σ1, σ2) + (1− p)u2(σ1, σ
′′′
2)) (8)

σ′′2 ∈ argmax
σ′′′
2 ∈Σ2

u2(σ1, σ
′′′
2) (9)

σ′′2 ∈ argmin
σ′′′
2 ∈Σ2

u1(σ1, σ
′′′
2) (10)

Therefore σ′′2 maximally exploits σ1, so:

u1(σ1, σ
′
2) = pu1(σ1, σ2) + (1− p)u1(σ1, σ

′′
2) (11)

= pu1(σ1, σ2) + (1− p)(v1 − ε) (12)

Since σ1 is a best response to σ′2, then for any σ′1 ∈ Σε-safe
1 :

u1(σ1, σ
′
2) ≥ u1(σ′1, σ

′
2) (13)

= pu1(σ′1, σ2) + (1− p)u1(σ′1, σ
′′
2) (14)

≥ pu1(σ′1, σ2) + (1− p)(v1 − ε) (15)

Subtracting common terms in Equations 12 and 15 gives u1(σ1, σ2) ≥ u1(σ′1, σ2), implying σ1 is an ε-safe
best response.

A.2 Description of Hand Strength Squared

The hand strength of a card sequence is the probability of a player winning the pot at a showdown given the
observed cards. The Hand strength squared of a card sequence is the expected square of the hand strength
after the final community card is revealed. Intuitively, hand strength squared is similar to hand strength but
gives a bonus to card sequences whose eventual hand strength has higher variance. Higher variance is preferred
as it means the player eventually will be more certain about their ultimate chances of winning even prior to
a showdown. More importantly, this metric for abstraction has been shown empirically to generate stronger
programs.

9

