
Maximum Margin Planning

Nathan D. Ratliff ndr@ri.cmu.edu
J. Andrew Bagnell dbagnell@ri.cmu.edu

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. 15213 USA

Martin A. Zinkevich maz@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E1, Canada

Abstract

Imitation learning of sequential, goal-
directed behavior by standard supervised
techniques is often difficult. We frame learn-
ing such behaviors as a maximum margin
structured prediction problem over a space
of policies. In this approach, we learn map-
pings from features to cost so an optimal pol-
icy in an MDP with these cost mimics the ex-
pert’s behavior. Further, we demonstrate a
simple, provably efficient approach to struc-
tured maximum margin learning, based on
the subgradient method, that leverages ex-
isting fast algorithms for inference. Although
the technique is general, it is particularly rel-
evant in problems where A* and dynamic
programming approaches make learning poli-
cies tractable in problems beyond the limita-
tions of a QP formulation. We demonstrate
our approach applied to route planning for
outdoor mobile robots, where the behavior a
designer wishes a planner to execute is often
clear, while specifying cost functions that en-
gender this behavior is a much more difficult
task.

1. Introduction

In “imitation learning” a learner attempts to mimic
an expert’s behavior or control strategy. In numerous
instances, notably within robotics (Pomerleau, 1989;
LeCun et al., 2006), supervised learning approaches
have been used to great effect to learn mappings from
features to decisions. Long-range and goal-directed be-
havior, by contrast, has proven more difficult to cap-
ture using these techniques.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

In mobile robotics, the motivating application of our
imitation learning approaches, researchers often en-
courage long-horizon goal directed behavior by parti-
tioning an autonomy software into a “perception” sub-
system and a “planning” subsystem. The perception
system computes various models and features of an en-
vironment. For instance, perception might determine
the supporting surface, obstacles lying above this sur-
face, average color at various locations, density of ladar
returns, et cetera. Planning takes as input a cost-map
over the vehicle configuration or state space (Hebert
et al., 1998) and computes a minimal risk (cost) path
through it that serves as a coherent sequence of deci-
sions for the robot over a long horizon. This approach
has proven powerful and lies at the heart of many au-
tonomous mobile robotic systems in both indoor and
outdoor environments.
Unfortunately, the leap from perception’s model to
costs for a planner is often a difficult one. In prac-
tice, it is often done by hand-designed heuristics that
are painstakingly validated by observing the result-
ing robot behavior. In this work, we propose a novel
method whereby we attempt to automate the mapping
from perception features to costs. We do so by fram-
ing the problem as one of supervised learning to take
advantage of examples given by an expert describing
desired behavior. In essence, we leverage the fact that
the desired behavior is often quite clear to a human
designer while specifying costs that engender this be-
havior is a much more difficult task, particularly when
it involves simultaneously tweaking a large set of knobs
that map features to costs.
Learning to plan so as to mimic a teacher’s behav-
ior may be cast as a structured prediction problem
over the space of policies. The learner’s goal is to
take example input features and example policies or
trajectories through the state space (e.g. paths) and
learn to predict the same sequence of decisions. De-
cisions at each state must be coordinated and their

Maximum Margin Planning

costs balanced to achieve a satisfactory global plan-
ning strategy that implements the desired behavior.
In this approach, our goal is to learn mappings from
features to cost functions so an optimal policy in a
Markov Decision Problem with this cost function im-
itates the expert’s behavior. We demonstrate that we
can learn such mappings in the structured large mar-
gin framework. (Taskar et al., 2005)
The key contributions of this work are three-fold.
First, we demonstrate a novel method for learning to
plan. Second, we demonstrate an efficient, simple ap-
proach to structured maximum-margin classification
(in both online and batch settings) that is applica-
ble whenever a fast specialized algorithm is available
to compute the minimum of the loss-augmented cost
function. This approach demonstrates linear conver-
gence when used in batch settings and is applicable to
large problems where other Quadratic Programming
techniques are not. We develop an online theory for
Structured Maximum Margin and show that our al-
gorithm achieves sublinear regret that scales inversely
with the margin and without a dependence on the size
of the policy we must learn. Finally, we demonstrate
empirically that our method is particularly applicable
to problems of relevance in mobile robotics. We out-
line our current research directions and other natural
applications of Max Margin Planning in the conclu-
sions (Section 5). We also discuss related approaches
to imitation learning and structured classification in
Section 5.

2. Preliminaries

We model the planning problem with discrete Markov
Decision Processes. Let x and a index the state and ac-
tion spaces X andA, respectively; and let p(y|x, a) and
s denote, respectively, the transition probablities and
initial state distribution. A discount factor on rewards
(if any) is absorbed into the transition probabilities.
Our reward functions1 are learned from supervised ex-
amples to produce policies that mimic demonstrated
behavior. We repeatedly make use of the linear pro-
gramming formulation of the MDP problem (Puter-
man, 1994), denoting by v ∈ V the primal variables of
the value function, and by µ ∈ G the dual state-action
frequency counts. We consider here only stationary
policies; the generalization is straightforward.
The input to our algorithm is a set of training instances
D = {(Xi,Ai, pi, Fi, yi,Li)}ni=1. A training instance
consists of an MDP with transition probabilities pi,

1In some deciplines is it more common and suitable to
describe problems in terms of costs rather than rewards.
In what follows, the term “cost” is used interchangeably to
mean “negative reward”.

state-action pairs (xi, ai) ∈ Xi × Ai over which d-
dimensional feature vectors are place in the form of
a d× |X ||A| feature matrix Fi. yi denotes the desired
trajectory (or full policy) that exemplifies behavior we
hope to match. We often consider the alternate repre-
sentation for such a trajectory in terms of µi, a vector
of state-action frequency counts. Note that since we
are encoding the policies in terms of the dual state-
action frequency counts, this formulation can attempt
to learn to match either trajectories or entire policies.
This will be described in detail below. We also discuss
the role of the loss vector li below.
We use subscripts to denote indexing by training in-
stance, and reserve superscripts for indexing into vec-
tors. (E.g. µx,a

i is the expected state-action frequency
for state x and action a of example i.) Note that we
will sometimes write D = {(Xi,Ai, pi, fi, yi,Li)}ni=1 ≡
{(Xi,Ai,Gi, Fi, µi, li)}ni=1, using fi(y) to denote vector
of expected feature counts Fiµ of the ith example. It is
useful for some problems, such as robot path planning,
to imagine representing the features as a set of maps
and example paths through those maps. For instance,
one feature map might indicate the elevation at each
state, another the slope, and a third the presence of
vegetation.
The learner attempts to find a linear mapping2 of
these features to rewards so that for each problem in-
stance the best policy over the resulting reward func-
tion µ∗ = arg maxµ∈Gi

wT Fiµ is “close” to the demon-
strated policy µi. The notion of closeness is defined
by a loss-function L : Y × Y → R+ between so-
lutions. In our work this function is of the form
L(y, yi) = Li(y) = lTi µ. Intuitively, a loss vector
li ∈ R|X ||A|+ is placed over state-action pairs that de-
fines for each state-action pair how much the learner
pays for failing to match the behavior of an example
policy yi as the cumulative loss of the learned policy
through this MDP. (See Figure 4)
The maximum margin principle builds in a degree of
robustness where we attempt to make the supplied
solution yi look significantly better than alternative
policies. In particular, we adopt the structured max-
margin framework and attempt to make yi better than
any other solution ŷ by a margin that scales with the
size of the loss of ŷ; we wish to ensure that the cor-
rect policy looks much more attractive than very bad
policies.

2Although space doesn’t permit full details, both formu-
lations we use for learning later straightfowardly generalize
to handle nonlinearity through the use of kernelization.

Maximum Margin Planning

2.1. Loss-functions

The framework thus described admits any loss func-
tion that factors over state-action pairs. A natural
loss function in the case of deterministic acyclic path
planning is the count of the number of states that the
planner visits that the teacher did not. We have found
somewhat better performance by smoothing this loss
function so that nearby paths are also admissible. In a
general MDP, we might penalize choosing different ac-
tions from the teacher at any states the teacher reaches
or penalize reaching states the teacher chooses not to
enter. We also assume that L(y, yi) ≥ 0.

2.2. Quadratic Programming Formulation

Given a training set D = {(Xi,Ai, pi, fi, yi,Li)}ni=1,
the structured large margin criteria (Taskar et al.,
2005) implies we are solving the following quadratic
program:3

min
w,ζi

1
2
‖w‖2 +

γ

n

∑
i

βiζ
q
i (1)

s.t. ∀i wT fi(yi) + ζi ≥ max
y∈Yi

wT fi(y) + Li(y) (2)

The intuition behind these constraints is that we al-
low only weight vectors for which the example policies
have higher expected reward than all other policies by
a margin that scales with the loss. The slack variables
ζi permit violations of these constraints for a penalty
that scales with the hyperparameter γ ≥ 0. βi > 0
are data dependent scalars that can be used for nor-
malization when the examples are of different lengths.
q ∈ {1, 2} distinguishes between L1 and L2 slack penal-
ties commonly found in the literature (Tsochantaridis
et al., 2005).
If we consider the case for which both fi(·) and Li(·)
are linear in the state-action frequencies µ as described
above (i.e. they factor over state-action pairs), the
maximum margin problem becomes

min
w,ζi

1
2
‖w‖2 +

γ

n

∑
i

βiζ
q
i (3)

s.t. ∀i wT Fiµi + ζi ≥ max
µ∈Gi

wT Fiµ + lTi µ (4)

where µ ∈ Gi expresses the Bellman-flow constraints
for each MDP, namely that µ ≥ 0 satisfies:∑

x,a

µx,api(x′|x, a) + sx′

i =
∑

a

µx′,a

The nonlinear, convex constraints in Equation 4 can
be transformed into a compact set of linear constraints

3Unless stated otherwise, ‖.‖ denotes the L2 norm.

(Taskar et al., 2005; Taskar et al., 2003) by computing
the dual of the right hand side of each yielding:

∀i wT Fiµi + ζi ≥ min
v∈Vi

sT
i v (5)

where v ∈ Vi are the value-functions that satisfy the
Bellman primal constraints:

∀x, a vx ≥ (wT Fi + li)x,a +
∑
x′

pi(x′|x, a)vx′
(6)

By combining the constraints together we can write
one compact quadratic program:

min
w,ζi,vi

1
2
‖w‖2 +

γ

n

∑
i

βiζ
q
i (7)

s.t. ∀i wT Fiµi + ζi ≥ sT
i vi (8)

∀i, x, a vx
i ≥ (wT Fi + li)x,a +

∑
x′

pi(x′|x, a)vx′

i (9)

This results provides a represenation of what we call
the Maximum Margin Planning (MMP) problem as a
compact quadratic program. Note that the number
of constraints scales linearly with state-action pairs
and training examples. While off-the-shelf quadratic
programming software can be applied at this point to
directly optimize this program, we provide an alter-
native formulation in Section 3 that allows us improve
significantly over this via the utilization of subgradient
methods.
We consider additional useful loss functions in Section
4, where we detail examples relevant to path planning
problems.

3. Efficient Optimization

In practice, solving the quadratic program in Equa-
tion 9 is at least as hard as solving the linear program-
ming formulation of a single MDP. While this can be
an appropriate strategy for a class of MDPs, it is gen-
erally appreciated that for many problems there exist
specially designed algorithms such as policy iteration
and A* that can solve particular classes of MDPs both
theoretically and empirically more rapidly. Developing
efficient specialized algorithms, and especially lever-
aging existing inference algorithms, is an open prob-
lem for general structured maximum margin problems.
(Taskar et al., 2005). We present a simple approach
based on the subgradient method (Shor, 1985) that al-
lows the use of fast maximization algorithms (e.g. fast
planners) for a provably efficient learning strategy.
The first step is to transform the optimization pro-
gram into a “hinge-loss” form. The hinge-loss view
is a common way to understand the maximum mar-
gin problem and relate it to other methods like logis-
tic regression and AdaBoost. This view comes from

Maximum Margin Planning

noting that the slack variables ζi are tight and thus
equal maxµ∈Gi

(wT Fi + lTi)µ−wT Fiµi. We can there-
fore move these constraints into the objective function,
simplifying the problem into a single cost function:

cq(w) =
1
n

n∑
i=1

βi

(
max
µ∈Gi

(wT Fi + lTi)µ− wT Fiµi

)q

+

λ

2
‖w‖2 (10)

where we have multiplied through by λ
γ to make a

regularized risk functional interpretation more clear
(Rifkin & Poggio, 2003). Again, q ∈ {1, 2} defines the
slack penalization.
This objective function is convex, but nondifferen-
tiable. We can optimize it by utilizing a generaliza-
tion of gradient descent called the subgradient method
(Shor, 1985). A subgradient of a convex function
c :W → R at w is defined as a vector g such that

∀w′ ∈ W, gT (w′ − w) ≤ c(w′)− c(w) (11)

Note that subgradients need not be unique, though at
points of differentiability, they necessarily agree with
the gradient. We denote the set of all subgradients of
c(·) at point w by ∂c(w).
To compute the subgradient of c(w), we make use
of the following four well known properties: (1) sub-
gradient operators are linear; (2) the gradient is the
unique subgradient of a differentiable function; (3) de-
noting y∗ = argmaxy[f(x, y)] for differentiable f(., y),
∇xf(x, y∗) is a subgradient of the piecewise differen-
tiable convex function maxy[f(x, y)]; (4) an analogous
chain rule holds as expected. We are now equipped
to compute a subgradient gq

w ∈ ∂c(w) of our objective
function (10):

gq
w =

1
n

n∑
i=1

qβi

(
(wT Fi + lTi)µ∗ − wT Fiµi

)q−1 ·

Fi∆wµi + λw (12)

where µ∗ = arg maxµ∈Gi
(wT Fi + lTi)µ and ∆wµi =

µ∗ − µi. This latter expression points out that, intu-
itively, the subgradient compares the state-action vis-
itation frequency counts between the example policy
and the optimal policy with respect to current reward
function wT Fi.
Note that computing the subgradient requires solving
the problem µ∗ = arg maxµ∈Gi(w

T Fi + lTi)µ for each
MDP. This is precisely the problem of solving the par-
ticular MDP with the reward function wT Fi + lTi , and
can be efficient implemented via a myriad of special-
ized algorithms. Algorithm 1 details the application
of the subgradient method to the Maximum Margin
Planning problem.

Algorithm 1 Max Margin Planning

1: procedure MMP(Training set {Fi, µi, li}Ni=1,
Regularization parameter λ > 0, Stepsize se-
quence {αt} (learning rate), Iterations T)

2: t← 1
3: w ← 0
4: while t ≤ T do
5: Compute optimal policy and state action

visitation frequencies µ∗,i for each in-
put map for loss augmented cost map
(wT Fi + lTi).

6: Compute g ∈ ∂c(w) as in Equation 12.
7: w ← w − αtg
8: (Optional): Project w on to any additional

constraints.
9: t← t + 1

10: end while
11: return w
12: end procedure

The basic iterative update given gt ∈ ∂c(wt) and αt is

wt+1 = PW [wt − αtgt] (13)

where P projects w onto any problem specific (convex)
constraints we may impose on w.4

3.1. Guarantees in the Batch Setting

In the batch setting, this algorithm is one of a well
studied class of algorithms forming the subgradient
method (Shor, 1985).5 Crucial to this method is
the choice of stepsize sequence {αt}; and convergence
guarantees vary accordingly. Our results are devel-
oped from (Nedic & Bertsekas, 2000) which analyzes
incremental subgradient algorithms, of which the sub-
gradient method is a special case.
Our results require a strong convexity assumption to
hold for the objective function. Given W ⊆ R

d, a
function f :W → R is η-strongly convex if there exists
g :W → R

d such that for all w,w′ ∈ W:

f(w′) ≥ f(w) + (g(w))T (w′ − w) + η‖w′ − w‖2 (14)

Theorem 1. Linear convergence of constant
stepsize sequence. Let the stepsize sequence {αt}

4It is actually sufficient that P be an approximate
projection operator that need only satisfy the inequality
∀w′ ∈ W, ‖PW [w]− w′‖ ≤ ‖w − w′‖.

5The term “subgradent method” is used in lieu of “sub-
gradient descent” because the method is not technically
a descent method. Since the stepsize sequence is chosen
in advance, the objective value per iterate can, and often
does, increase.

Maximum Margin Planning

of Algorithm (1) be chosen as αt = α ≤ 1
λ . Fur-

thermore, assume for a particular region of radius
R around the minimum, ∀w, g ∈ ∂c(w), ‖g‖ ≤ C.
Then the algorithm converges at a linear rate to a
region of some minimum point x∗ of c bounded by

‖xmin − x∗‖ ≤
√

αC2

λ ≤ C
λ .

Proof. (Sketch) By the strong convexity of cq(w) and
Proposition 2.4 of (Nedic & Bertsekas, 2000) we have

‖wt+1 − w∗‖2 ≤ (1− αλ)t+1‖w0 − w∗‖2 +
αC2

λ

−→
t→∞

αC2

λ
≤ C2

λ2

2

This theorem shows that we attain a linear conver-
gence rate under a sufficiently small constant stepsize,
but that convergence is only to a region around the
minimum. Alternatively, we can choose a diminishing
stepsize rule of the form αt = r

t for t ≥ 1, where r is
some positive constant that can be thought of as the
learning rate. Under this rule, Algorithm 1 is guaran-
teed to converge to the minimum, but only at a sublin-
ear rate under the above strong convexity assumption
(see (Nedic & Bertsekas, 2000), Proposition 2.8).

3.2. Optimization in an Online Setting

In contrast with many optimization techniques, the
subgradient method naturally extends from the batch
setting (as presented) to an online one. In the online
setting one imagines seeing several planning problems
on closely related domains: in particular, one may ob-
serve a domain, be required to plan a path for it, and
then observe the “correct” path (or observe the cor-
rections of the suggested path). At each time step i:
(1) We observe Gi and Fi, (2) Select a weight vector
wi and using this compute a resulting path (3) Finally
we observe the true policy yi. Thus, we can define
ci(w) = λ

2 ‖w‖
2 + maxµ∈Gi

(wT Fi + li)µ − wT Fiµi to
be the strongly convex cost function (see Equation 10)
at time i, which we can compute given yi, Gi, and
Fi. This is now an online convex programming
problem (Zinkevich, 2003), to which we will apply
the extension of Greedy Projection by (Hazan et al.,
2006) where the learning rate is 1/(iλ).
The loss we truly care about on round i is the plan-
ning loss, L(µi, σi), where σi is the policy we choose.
Space doesn’t permit a proof,6 but the following may
be derived using tools from (Hazan et al., 2006):
Theorem 2. Sublinear regret for subgradi-
ent MMP. Assume that the features in each state
are bounded in norm by 1. Further, assume that

6See appendix of extended version of paper at http://
(removed for review).

there is a w∗ that with hindsight achieves for all i,
maxµ∈Gi

wT Fi(µ− µi) + lTi µ = 0, then:∑
i

L(µi, σi) ≤
1
λ

(1 + lnn) + nλ‖w∗‖2 (15)

Choosing λ =
√

1+ln n
‖w∗‖

√
n
, then:∑

i

L(µi, σi) ≤ ‖w∗‖
√

n(1 + lnn) (16)

Thus, if we know n and the achievable margin, our loss
grows only sublinearly in the number of time steps.
2

Further, in the case when there is no perfect w∗, we
can instead achieve a competitive ratio that scales in-
versely with the margin. Observe that Theorem 2 is
a result about the additive loss function L specifically.
If we attempted instead to consider, for instance, a
setting where we did not require more margin from
higher loss paths (e.g. 0/1 loss on paths) our bound
would be much weaker and scale with the size of the
domain.

3.3. Modifications for Acyclic Positive Costs

For infinite horizon problems in acyclic domains A*
and its variants are generally the most efficient route
to finding a good plan. Such domains require rewards
to be strictly negative (equivalently, costs must be
strictly positive), otherwise infinite reward paths may
result. The strictness of this negativity is to ensure
the existence of an admissable heuristic.
Assuming Fi ≥ 0 (element-wise), this can be imple-
mented via component-wise negativity constraints on
w or a set of constraints enforcing the negativity of the
reward for each state-action pair individually. Exact
projection onto the former can be implemented sim-
ply by setting the violated components of w to 0, and
an approximate projection onto the latter can be im-
plemented efficiently by iteratively projecting onto the
most violated constraint.

3.4. Incorporating Prior Knowledge

It is often important to be able to build in prior knowl-
edge about cost-functions that may improve learning
performance. One useful technique is to regularize the
solution about a prior belief on w instead of the 0 vec-
tor. Another is to have our loss function mark certain
state-action pairs as being poor choices: this forces our
algorithm to have large margin with respect to them.
Finally, we may incorporate domain knowledge in the
form of constaints on w: e.g., we may require that
a certain area state have at least double the cost of
another state. All of these are powerful methods to

Maximum Margin Planning

transfer expert knowledge to the learner in addition
to the use of training examples.

4. Experimental Results

To validating these concepts we focused on the practi-
cal problem of path planning using the batch learning
algorithm presented in section 3. In this setting, the
MDP can be viewed as a two-dimensional map dis-
cretized uniformely into an array of cells. Each cell
represents a particular location in the world and typ-
ical actions include moving from a given cell to one
of the eight neighboring cells. In all experiments, we
used A∗ as our specialized planning algorithm, set
βi = 1/‖µi‖q1, chose q = 2, and used reasonable values
for regularization.
We first exhibit the versatility of our algorthm in learn-
ing distinct concepts within a single domain. Differing
example trajectories, demonstrated in one region of
a map, lead to a significantly different behavior in a
separate holdout region after learning. Figure 1 shows
qualitatively the results of this experiment. The be-
havior presented in the top row suggests a desire to
stay on the road, while that portrayed in the bottom
row embodies more clandestine needs. By column,
from left to right, the images depict the training exam-
ple presented to the algorithm, the learned cost map
on a holdout region after training, and the resulting
behavior produced by A∗ over this region.7

For our second experiment, the data derived entirely
from laser range readings (ladar) over the region of in-
terest collected during an overhead helicopter sweep.8

A visualization of the raw data is depicted in Figure 3.
Figure 2 shows typical results from a holdout region.
The learned behavior (green) often matches well the
desired behavior (red). Even when the learner failed
to match the desired trajectory exactly, the learned
behavior adheres to the primary rules set forth im-
plicitly by the examples. Namely, the learner finds an
efficient path that avoids buildings (white) and grassy
areas (gray) in lieu of roads.
Notice that the loss-augmented path (blue) in this fig-
ure performs generally worse than the final learned tra-
jectory. This is because loss-augmentation makes areas
of high loss more desirable than they would be in the

7The features used in this experiment were derived en-
tirely from a single overhead satellite image. We dis-
cretized the image into five distinct color classes and added
smoothed versions of the resulting features to propegate
proximity information.

8Raw features were computed from mean and standard
deviations from each of elevation, signal reflectance, hue,
saturation, and local ladar shape information (Vandapel
et al., 2004). Again, we added smoothed versions of the
raw features to utilize proximity information.

Figure 1. Demonstration of learning to plan based on satel-
lite color imagery. For a particular training/holdout region
pair, the top row trains the learner to follow the road while
the bottom row trains the learner to “hide” in the trees.
From left to right, the columns depict the single training
example presented, the learned cost map over the holdout
region, and the corresponding learned behavior over that
region. Cost scales with intensity.

final learned map. Intuitively, if the learner is able to
perform well with respect to the loss-augmented cost
map, then it should perform even better without the
loss-augmentation; that is, the concept is learned with
margin.
For comparison, we attempted to learn similar behav-
ior using two alternative approaches to MMP. First,
we tried the reactive approach of directly learning from
examples a mapping that takes state features to next
actions as in (LeCun et al., 2006).9 Unfortunately, the
resulting paths were rather poor matches to the train-
ing data. See Figure 3 for a typical example of a path
learned by the classifier.
A somewhat more successful attempt was to try to
learn costs directly by a hand labeling of regions. This
provides dramatically more explicit information to the
learner than MMP requires: a trainer provided exam-
ples regions of low, medium, and high costs, based
upon (1) expert knowledge of the planner, (2) iter-
ated training and observation, and (3) the trainer had
prior knowledge of the cost maps found under MMP
batch learning on this data set.10 Although cost maps

9We used the same training data, training Regularized
Least Squares classifiers (Rifkin & Poggio, 2003) to predict
which nearby state to transition to. It proved difficult to
engineer good features here; our best results come from us-
ing the same local state features as MMP augmented with
distance and orientation to the goal. The learner typically
achieved between 0.7-0.85 prediction accuracy.

10The low cost examples came from the example paths
and the medium/high cost examples were supplied sepa-
rately. Low cost and high cost examples were chosen as

Maximum Margin Planning

Figure 2. See Figure 3 for data-set. Data shown are MMP learned cost maps (dark low cost) with a teacher supplied path
(red), loss-augmented path (blue), and final learned path (green). These are learned results on a holdout set.

Figure 3. Left: the result of a next-action classifier applied
super-imposed on a visualization of the second data-set.
Right: a cost map learned by manual training of a regres-
sion. The learned paths (green) in both cases are poor ap-
proximations of the training examples (not shown on left,
red on right).

given this extra information looked qualitivately cor-
rect, Figure 3 and Figure 4 demonstrate that the plan-
ning performance was significantly inferior.

5. Related and Future Work

Two strands of work are most directly related to Max-
imum Margin Planning. One is work on Inverse Re-
inforcement Learning (IRL). The goal in IRL is to
observe an agent acting in an MDP (with unknown
reward function) and extract from the agent’s behav-
ior the reinforcement function it is attempting to op-
timize. Unfortunately, it is well known that standard
IRL is ill-posed: the zero reward function, for instance,
admits all policies as optimal ones. Nevertheless, there
have been some heuristic attempts to use IRL ideas
to similar effect as MMP. One useful heuristic is to
have a learning algorithm try to match expected fea-
ture counts (in our language

∑
i Fµi) (Abbeel & Ng,

minimum and maximum values for A*, respectively. Mul-
tiple medium cost levels were tried.

2004) between the learner’s policy and the demon-
strated examples. This variant of IRL differs from
MMP in that MMP is designed to allow the demon-
stration of policies from more than a single MDP: we
typically demonstrate examples over multiple feature
maps and with different start and goal states, with
the aim of the learner to extrapolate to entirely new
maps and goals. This leads to significantly different
algorithmic approaches. The relation between IRL
and MMP is reminiscent of the distinction between
generative and discriminative learning: IRL feature
matching is designed for learning when we believe an
agent is acting (near-optimally) in an MDP and fur-
ther that we can (nearly) match feature expectations.
These assumptions, like those of generative models, are
strong ones: the ability to match feature expectations,
for instance, means that the algorithm’s behavior will
be near-optimal for every cost function linear in the
features simultaneously (i.e. for any reward function
wT F). MMP makes the weaker assumption that our
goal is to directly mimic output behavior and is agnos-
tic about a real underlying MDP or reward function.
MDPs here structure the output decisions and provide
a potentially natural class of experts that we attempt
to compete with.
The other strand of closely related work is that of
Structured Max-Margin optimization techniques. The
subgradient optimization presented here makes prac-
tical learning in problems where straightforward QP
techniques are intractable. It is often the case, that
path planning problems are quickly solved with MMP
that would be too large to even represent for a generic
QP solver. Recently, a number of other techniques
have been proposed to solve problems of these kinds,
including cutting plane (Tsochantaridis et al., 2005)
and extra-gradient techniques. (Taskar et al., 2006)
The latter is applicable where inference may be writ-
ten as a linear program and is also able to achieve
linear convergence rates. The subgradient method

Maximum Margin Planning

Figure 4. (Left) Visualization of inverted loss function (1−
l(x)) for a training example path. (Right) Comparison
of holdout loss of MMP (by number of iterations) to a
regression method where a teacher hand-labeled costs. The
next-action classifier approach had a much larger loss than
either method.

has the advantage of being applicable to any prob-
lems where loss augmented inference may be quickly
solved including by combinatorial methods. Further,
our algorithm extends naturally to the online case,
where sublinear regret bounds are available. It will
be interesting to compare these methods on problems
where they are both applicable. In recent work, (Du-
ame et al., 2006) has considered reinforcement learning
based approaches to structured classification. Subgra-
dient methods for (unstructured) margin linear class-
sification were considered in (Zhang, 2004). (LeCun
et al., 1998) considers the use of gradient methods for
learning using decoding methods such as Viterbi; our
approach (if applied to sequence labeling) extends such
methods to use notions of structured maximum mar-
gin.
Our current research effort is to take advantage of
the online behavior and apply the algorithm in a re-
planning scenario where new features are being gen-
erated continuously from on-board perception. Our
algorithm has natural applications in a variety of non-
robotic domains where planning is essential. We are
currently applying improved versions of the subgradi-
ent method, also able to leverage existing specialized
algorithms inference algorithms, to a variety of maxi-
mum margin learning problems.

Acknowledgements
We thank Omead Amidi, Boris Sofman, Tony Stentz, and
Nicolas Vandapel for their generous help with the experi-
mental work as well as valuable conversations with Geoff
Gordon. The first two authors gratefully acknowledge the
partial support of this research by the DARPA Learning
for Locomotion contract.

References
Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via

inverse reinforcement learning. ICML ’04: Proceedings
of the twenty-first international conference on Machine
learning.

Duame, H., Langford, J., & Marcu, D. (2006). Search-
based structured prediction. In Preparation.

Hazan, E., Kalai, A., Kale, S., & Agarwal, A. (2006). Loga-
rithmic regret algorithms for online convex optimization.
To appear in COLT 2006.

Hebert, M., Stentz, A. T., & Thorpe, C. (1998). Mo-
bility planning for autonomous navigation of multiple
robots in unstructured environments. Proceedings of
ISIC/CIRA/ISAS Joint Conference.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE (pp. 2278–2324).

LeCun, Y., Muller, U., Ben, J., Cosatto, E., & Flepp, B.
(2006). Off-road obstacle avoidance through end-to-end
learning. In Advances in neural information processing
systems 18.

Nedic, A., & Bertsekas, D. (2000). Convergence rate of in-
cremental subgradient algorithms. Stochastic Optimiza-
tion: Algorithms and Applications.

Pomerleau, D. (1989). Alvinn: An autonomous land vehi-
cle in a neural network. Advances in Neural Information
Processing Systems 1.

Puterman, M. (1994). Markov decision processes: Discrete
stochastic dynamic programming. Wiley.

Rifkin, Y., & Poggio (2003). Regularized least squares
classification. Advances in Learning Theory: Methods,
Models and Applications. IOS Press.

Shor, N. Z. (1985). Minimization methods for non-
differentiable functions. Springer-Verlag.

Taskar, B., Chatalbashev, V., Guestrin, C., & Koller, D.
(2005). Learning structured prediction models: A large
margin approach. Twenty Second International Confer-
ence on Machine Learning (ICML05).

Taskar, B., Guestrin, C., & Koller, D. (2003). Max mar-
gin markov networks. Advances in Neural Information
Processing Systems (NIPS-14).

Taskar, B., Lacoste-Julien, S., & Jordan, M. (2006). Struc-
tured prediction via the extragradient method. In Ad-
vances in neural information processing systems 18.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun,
Y. (2005). Large margin methods for structured and
interdependent output variables. Journal of Machine
Learning Research, 1453–1484.

Vandapel, N., Huber, D., Kapuria, A., & Hebert, M.
(2004). Natural terrain classification using 3-d ladar
data. IEEE International Conference on Robotics and
Automation.

Zhang, T. (2004). Solving large scale linear prediction
problems using stochastic gradient descent algorithms.
Proceedings of ICML.

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent. Proceedings
of the Twentieth International Conference on Machine
Learning.

