Competitive Analysis of the Explore/Exploit Tradeoff

John Langford

JCL+@CS.CMU.EDU

Computer Science Department, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

Martin Zinkevich

MAZ-+@QCS.CMU.EDU

Computer Science Department, Carnegie-Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213

Sham Kakade

SHAM@GATSBY.UCL.AC.UK

Gatsby Computational Neuroscience Unit, UCL, London WC1IN 3AR, UK

Abstract

We investigate the explore/exploit
trade-off in reinforcement learning us-
ing competitive analysis applied to an
abstract model. We state and prove
lower and upper bounds on the com-
petitive ratio. The essential conclu-
sion of our analysis is that optimizing
the explore/exploit trade-off is much
easier with a few pieces of extra knowl-
edge such as the stopping time or up-
per and lower bounds on the value of
the optimal exploitation policy.

1 Introduction

It is well known that efficient reinforcement learning
algorithms must use some means for active exploration
(see for example [9]). We consider an abstract class of
algorithms where an ezplicit decision between explo-
ration and exploitation is made. In this framework, we
use competitive analysis to analyze the trade-off so as
to maximize the cumulative reward the agent receives.

There are two relevant pieces of prior work that have
well-defined notions of optimality in the on-line set-
ting. First, the E* algorithm of Kearns and Singh [6]
shows that, given certain assumptions about the world,
the agent can achieve cumulative reward close to op-
timal in polynomial time (in the number of states).
The notion of optimality used is the largest possible
payoff among those policies that “mix” within some
pre-chosen time. The time required to achieve near op-
timal payoff is then polynomial in this “mixing time”.
The other notion of optimality is in the competitive
analysis of the N-armed bandit problem [1][4]. In this
analysis we start with a box containing several levers
each of which gives some reward when pulled. The
goal is to choose the right lever in order to maximize
reward and the expected reward is compared with the
“optimal” algorithm which chooses the one lever which
returns the largest reward.

Both of these notions of “optimality” are reasonable,
and their respective algorithms specify means to get
close to their respective notion of optimality. How-
ever, both notions assume the optimal algorithm al-
ways chooses actions under a policy that achieves the
maximal reward. This is unrealistic since any practi-
cal algorithm must engage in exploration first before
it finds this optimal policy. Hence, any feasible al-
gorithm will behave in a manner quite different from
optimal behavior.

We focus on analyzing only the explo-
ration/exploitation trade-off. Informally, in the
model we consider, the agent only has to decide
between exploring and exploiting. We assume that if
n exploration steps are carried out during the course
of the game then this results in the same policy
improvement, regardless of which state the agent is
in or when this exploration was carried out. This is
clearly an abstraction since exploration is, in general,
state dependent. We also make a weaker assumption;
that exploitation does not result in exploration.

The explore/exploit trade-off problem is a search prob-
lem. Competitive analysis has been previously applied
to search problems (see [3] for examples) although this
particular search problem appears new. The most
strongly related previous problems are competitive fi-
nancial decision making problems where the goal is to
choose the optimal trading time [5][2]. The techniques
applied to these problems are used here although our
model is different enough such that no direct reduction
exists.

In competitive analysis, the performance of our algo-
rithm is compared with the performance that we could
have achieved given all available information before
decisions are made. This comparison is done on the
worst sequence so the notion of an good algorithm is
the algorithm that is not much worse than the optimal
algorithm. This paper analyzes the worst case gap be-
tween how well an algorithm could have done and how
well an algorithm did.

This paper has the following results:

(1) An abstract model for analyzing algorithms
which make a trade-off between exploration
and exploitation.

(2) Upper and lower bounds on competitive opti-
mality for general algorithms in this model.

(3) Upper and lower bounds on the competitive
optimality for algorithms which are given the
stopping time, T', or upper and lower bounds
(Rmin and Rmax) on the average reward the
optimal algorithm can achieve.

1.1 The abstract model

The common notion of optimal policy is one which
does not need to engage in exploration: it simply al-
ways chooses the best actions from the start of the
game. Any practical algorithm must engage in explo-
ration and can thus never reasonably behave in a man-
ner similar to an “optimal” algorithm for this notion
of optimal. Our aim is to construct an abstract model
in which an optimal algorithm must also explore. We
construct an abstract model where the “optimal” al-
gorithm engages in exploration and compare our algo-
rithm to this (more realistic) notion of “optimal”.

Our goal is to analyze the trade-off between explo-
ration and exploitation. Suppose we have an agent,
which can do two “meta-actions” which are labeled “ex-
plore ” and “exploit”. In addition, the agent has the
knowledge of the current value of its “exploit” action.
Let this exploitation value be R. When the “exploit”
action is pressed, the agent receives reward . When
the “explore” button is pressed the agent receives 0 re-
ward but the number R monotonically increases due
to the information gained from exploration. The goal
of the agent is simply to maximize the total reward
that it receives.

The motivation for this problem is that it is an ab-
straction of a very common problem. It is often the
case that an agent may choose between either exploit-
ing with the best method derivable from the known
knowledge of the world, or sacrificing the exploitation
by instead gathering information which (hopefully) al-
lows better exploitation in the future.

We insist that the exploitation value R increase mono-
tonically with exploration simply because extra infor-
mation acquired during exploration phases hopefully
improves the exploitation efficiency. It is important
to note that we do not require that the reward R in-
crease strictly. An algorithm is some method to switch
between exploration and exploitation, which can be
based on the previous exploitation values. We define
the wvalue of an explore/exploit algorithm to be cu-
mulative reward obtained in T steps, and the optimal

algorithm is one which maximizes this cumulative re-
ward.

An example sequence of changing exploitation values,
R;, might be:

000011239999910

Here, every time we explore we advance one increment
in this sequence, and the starting exploitation value
is Ro. Thus, after exploring 3 times, our exploitation
policy has value 0. After 4 explorations, 1, and after
8, 9. We also assume that any exploitation does not
advance any increments.

Let us consider the situation where the game ends in
T = 13 rounds. In particular, we might imagine a
strategy which explores 4 rounds, then exploits for 9
rounds, and a strategy which explores 12 rounds, then
exploits for one round. The first strategy has cumula-
tive reward:

1x9=9
and the second:
9%x1=9

The optimal strategy explores 8 times and then ex-
ploits 5 times to achieve value:

9%x5 =45

Note here that we have achieved the goal of a realistic
notion of optimal: our optimal algorithm engages in
exploration. Also note that monotonicity implies that
the optimal strategy always does exploration before
exploitation. Thus, the optimal strategy always con-
sists of exploration, and then exploitation. The prob-
lem of optimizing the trade-off is then simply finding
the best switching time.

1.2 The analysis

We wish to compare the best possible strategy (given
prior knowledge of the monotonically increasing re-
ward sequence) with an algorithm that makes ex-
plore/exploit decisions based upon only observed val-
ues R. We do this in the common “competitive analy-
sis” setting [3]. This comparison is done with a worst
case over all problems.

Competitive analysis typically compares an algorithm
with the “best possible” algorithm (given all informa-
tion). Let C, be the cumulative reward of the optimal
algorithm. We want to use a definition which allows
randomized algorithms for trading off between explo-
ration and exploitation. A randomized algorithm has
a source of uniform random bits independent of the
problem. In general, any randomized algorithm, A
can be regarded as a deterministic algorithm which
takes it’s random bits as an additional argument. If
a randomized algorithm A which uses random bits r

achieves total cumulative reward Cjy,,, then the com-
petitive ratio is typically defined as:

C.
maXx
problems ETCA,T

Here r is all the random bits used by the algorithm A
and E, is the expectation over the random bits r.

2 Competitive Analysis

Before starting the analysis, we prove a meta-theorem
which implies that we need only consider optimal algo-
rithms which switch from exploration to exploitation,
but not vice versa. The implication of this theorem is
that the space of possible optimal algorithms is much
smaller than expected.

Lemma 2.1. (explore then exploit) For all sequences
R; and all algorithms which complete n explorations
and m exploitations, the algorithm with the largest pos-
sible reward first does n explorations then m exploita-
tions.

Proof. Consider any algorithm which exploits dur-
ing round ¢ and explores during some later round #'.
Consider the altered algorithm which explores during
round ¢ and exploits during round ¢'. This alteration
leaves unaffected the values of exploitations at rounds
earlier than ¢ or later than ¢, and it monotonically
improves the reward received from any exploitations
in the interval (¢,¢']. The lemma follows by induction
on all pairs (¢,t') of exploitation followed by explo-
ration. O

This lemma implies that the optimal algorithm (which
already knows the value of exploration) always does
exploration followed by exploitation. Our algorithm
may or may not follow this behavior. Later, we prove
that the best algorithm which knows the stopping
time, T" does all exploration before exploitation.

The optimal algorithm explores first then exploits for
the remaining time. Let R,p be the exploitation value
per time step, and let ¢,p¢ be the number of times steps
the optimal exploits. The cumulative reward received
by optimal is then R,pttopt and the competitive ratio
is:

Ropt (problem)top (problem)

E,.C 4, (problem)

problems

2.1 Results

We now present upper and lower bounds on the com-
petitive ratio for deterministic and randomized algo-
rithms with varying pieces of available information. In
a randomized algorithm the decision to explore or ex-
ploit is stochastic. In competitive analysis, an upper
bound is a bound on the mazimal lower bound. In

particular, an upper bound of X implies that there
exists an algorithm with competitive ratio of X. Our
proofs of the upper bounds presented involve explicitly
defining such an algorithm.

Let T be the number of rounds before termination and
let Rmax and Rmin be upper and lower bounds on Rp.
Note that we assume 0 is the minimum possible aver-
age reward.

We consider algorithms with knowledge of:

(1)

(2) T

(3) Rmax and Rpin > 0.
(4) T, Rpax and Ry > 0.

Here is a table of our results for deterministic algo-
rithms:

| | Upper bound | Lower Bound |

Nothing 00 00
max; min Rmin 2}2min
T T T
T,R Rinin | min (T M) min (T M)
» £lmax; £tmin > Renin > 2Rmin

Note that with no information, the deterministic com-
petitive ratio is very bad.

For randomized algorithms, it is convenient to define

fx) = Q(%;lgoz—w) and g(z) = 1+Inz. Note that g(z)

differs by only a loglog z factor from %g"lgoz—m implying
that g(z) and f(z) have similar behavior. The table of
results for randomized algorithms is considerably more

encouraging:

| | Upper bound | Lower Bound

Nothing Ve >0 %Tl—i-e T_1
el I € = I =)
T 9(T) [i)
T, Rmax, Rin | g(min(T, %)) f (min (T, %))

The competitive analysis of reinforcement learning
shows that optimizing the explore/exploit trade-off is,
in general, quite difficult. The analysis shows several
important things:

(1) Randomized algorithms achieve significantly
better performance than deterministic algo-
rithms by amortizing worst-case situations.

(2) The lower bounds are near to the upper
bounds (up to loglog factors).

(3) Knowledge of T' (the termination time) implies
there exists an algorithm with a competitive
ratio of logT'.

(4) Knowledge of Ryax and Ry, which are up-
per and lower bounds on the exploitation value
Ropt of the optimal policy, implies there ex-
ists an algorithm with a competitive ratio of
In Bmax

2.2 No knowledge

The worst case is that our algorithm knows nothing.
Deterministic algorithms perform remarkably poorly
here.

Corollary 2.2. (No Knowledge, deterministic lower
bound) All deterministic algorithms have a competitive
ratio of co.

Proof. The proof is done by taking the limit as
Rmax — oo of the competitive ratio resulting from
a theorem 2.10, which we prove later. O

The statements about what we can and cannot prove
given no knowledge of T alter radically when random-
ization is allowed and we look at expected competitive
ratios. Randomization allows us to greatly reduce both
the upper and lower bounds.

Theorem 2.3. (No Knowledge, randomized upper
bound) For all € > 0, there exists a randomized al-
gorithm with a competitive ratio of %Tl“‘e.

Proof. Consider the randomized algorithm which
switches from exploration to exploitation at time step
t with probability:

Pr(¢)

X t1+€
The normalization for this distribution is bounded. In
particular:

[e%9) o 4

1 <1 1+e€
— =1 — <1 —dt =

The optimal algorithm switches from exploration to
exploitation at some value top. Our randomized al-
gorithm switches at time t,5¢ with probability greater

than 1%”1% This implies that the expected value
opt
is at least 1_?6 ﬁ‘f: and so the competitive ratio is
opt
bounded by:
1 + 6T1+6
€

O

This upper bound is near to the following randomized
lower bound.

Theorem 2.4. (No Knowledge, randomized lower
bound) For all randomized algorithms, the competitive
ratio is at least T — 1.

Proof. Since the competitive ratio is defined in a worst
case scenario, we choose a particular sequence and
show how all randomized algorithms have a competi-
tive ratio of at least 7" — 1 on this sequence.

Consider the sequence which has an ith entry of R; =
(4i +4)%. This sequence has the property that the op-
timal policy always explores except for the final round
where it exploits.

Let p; be the chance the algorithm first switches from
exploration to exploitation on the ¢th round in this
sequence. Since Y, % = oo and probability distri-
butions are normalized, we know that there must exist
some time ¢ where p; < % Let us choose the stopping
time to be T' =t + 1 and let C; be the total cumula-
tive reward obtained if the algorithm switches at time
i. Since a property of the sequence is that C; > C;_1
and since C; = 0 for i > t 4 1, the payoff is

t
Zpici
i=1
t—1

Cepe + Cia Zpi

i=1

EA =

IN

Cy
2
Ry
2
Ry R
2t 2

where the last step follows since by definition of the
sequence, R;_1 < %. The optimal algorithm achieves
total reward Copy = Ry so the competitive ratio is at

least t =T — 1. O

IA

+Ci

<

2.3 Knowledge of T only

The upper and lower bounds shift dramatically when
T is known. The deterministic competitive ratio drops
from oo to T'.

Theorem 2.5. (Know T, deterministic upper bound)
Given knowledge of T, there exists a deterministic al-
gorithm with competitive ratio of T'.

Proof. Consider the algorithm which explores until the
last step, and then exploits once. This algorithm has
a one round reward at least as large as R,pt which
implies a competitive ratio of T, since optimal could
obtain at most RoptT'. O

A lower bound of T' also applies.

Corollary 2.6. (Know T, deterministic lower bound)
All deterministic algorithms have a competitive ratio
of at least T.

Proof. Optimization of the full knowledge determinis-
tic lower bound (Theorem 2.16). O

Randomized algorithms also improve their competitive
ratio significantly.

Theorem 2.7. (Know T, randomized upper bound)
There exists a randomized algorithm which achieves a
competitive ratio of 1 +1InT given knowledge of T.

Proof. For any sequence, let topy be the number of
times that the optimal algorithm exploits. Also let
Ropt be the reward received each turn the optimal al-
gorithm exploits.

We analyze a randomized algorithm which starts out
doing exploration and randomly decides the amount of
time ¢ which it exploits. If we guess ¢ < tqp, then we
receive a return on each round of exploitation which is
at least as large as Rypt because we explore at least as
often as the optimal algorithm. If we guess a t > tqp¢,
then we could obtain 0 reward, since not enough explo-
ration was conducted. Hence, the expected cumulative
reward of our algorithm is bounded by:

E’I‘[CT‘] Z Er[0r|t S topt] PI‘[t S topt]
> Er[Roptt|t S topt] I:I‘[t S topt]

Z RoptEr [t|t S topt] :F:‘r[t S topt]

Now we specify how to choose this time. First, choose
v from the real numbers in [1, 7] according to the fol-
lowing cumulative distribution:

14+Inz

1+InT

Notice that this cumulative distribution places a point
mass on v = 1. Let the switching time be ¢t = [v].
Since topt is an integer, t < tope if and only if v <
topt- Therefore, E.[t|t < topt] > Er[v|v < topt]. Also,
Pr.[t < topt] = Prp[v < topt]. It follows that:

E.[C;]

Vz € [I,T],PI‘[U < -'L'] =

> RoptEr [UlU < topt] 121“['1} < topt]
> RoptEr['Ulv = 1] PI’[’Z) = 1]
I
+Ropt Er[v]1 < v < topi F;r[l <0 < topt]

1+1In1l topt xdx
> - -
= o (1 +InT +/1 (1 +lnT)>

1 1 topt
>
= Ropt(1+1nT+1+1nT‘/1' d.fL')
> Ropttopt
— 1+InT
This proves a competitive ratio of 1 +1nT'. O

A similar lower bound also holds for randomized algo-
rithms.

Corollary 2.8. (Know T, randomized lower). For
all randomized algorithms, the competitive ratio is

logT
loglogT }*

Proof. The corollary is implied by optimization of the
full knowledge lower bound 2.17. O

2.4 Knowledge of Rmax and Rmin

It turns out that knowledge of just Rmin (a lower
bound on Rypy) or just Rmax (an upper bound on Ropt,)
is not very interesting, since we can show the compet-
itive ratio is infinite in both of these cases. Intuitively,
consider the case where Ry, is known, an adversari-
ally chosen sequence can just use an infinite Ryax to
force an infinite competitive rate.

However, when both R,,., and Ry, are known, the
lower bounds no longer apply. Essentially, knowledge
of lower and upper bounds which are not separated by
too many orders of magnitude can be regarded as a
limit on the precision of exploitation values.

The first step is upper and lower bounds for determin-
istic algorithms. The analysis shows a large improve-
ment over the “know nothing” case.

Theorem 2.9. (Know R0 and Ryin, deterministic
upper bound) There exists a deterministic algorithm
with competitive ratio gm“ .

min

Proof. Consider the algorithm which always exploits
as soon as it sees an exploitation value R > Ruyin.
This algorithm exploits for ¢ > t,p rounds since the
optimal algorithm must explore for at least as many
rounds. The competitive ratio is Ropttopt < g:“::::: =

Rmax
Rmin * g

This upper bound is tight up to a constant of 2.

Corollary 2.10. (Know Ryuz and Ry, determin-
istic lower bound) Given Ryin ond Ryey 8.6 Rpin <
Ropt < Rppag, all deterministic algorithms have a com-

o . Ronas
petitive ratio greater than R -

Proof. Optimization of the deterministic full knowl-
edge lower bound (Theorem 2.16). O

Once again, randomization allows us to reduce the up-
per bound from a linear to a logarithmic factor.

Theorem 2.11. (Know Ruin, Rmaes, randomized up-
per bound) If Rin and Rpe. are lower and up-
per bounds on Rgp:, then there exists a randomized

algorithm with knowledge of Rp,in and Rp,.. which
achieves a competitive ratio of 1 + In %.

Proof. Let us choose a reward threshold G at ran-
dom, where we choose to exploit if our exploitation
value is ever greater than (. Specifically, for all
Z € [Rmin, Rmax], let

1+1In 5%

= Runax
1+1In -

Note that this cumulative distribution function implies
a point mass at G = Rpn given by Pr[G = Rmin] =

ﬁ. This distribution is normalized because the
7 Emax
R .

cumulative distribution is 1 at Rpax and the probabil-
ity of G = Rpin is equal to the cumulative probability
at G = Rmin-

Pr[G <

z]

Suppose that the optimal algorithm exploits when the
exploitation value is Ropt. Then, if we set G be-
low Rypt, we receive a reward for at least as many
rounds, but may only receive G each of those rounds.
If we set G above Rgp, we might not receive any-
thing. Let us only consider the expected reward of the
algorithm(E,C,) in a round where the optimal algo-
rithm receives a reward. Let the instantaneous reward
our algorithm receives be denoted by R4

E.Ry
= Rmin Prr[G = Rmin] + f}?moi: PI‘[G = y]ydy

— . 1 opt 1
Rimin 1+1In Hmax mein y(1+In Emax) ydy
min min
—_ min Ropt —Rmin
1+41n Bmax 1+41n Emax
Bmin Bmin

opt

= 141n Bmax
1+I1n R
Therefore, the cumulative return is at least
Ropito . A . e
ﬁwhmh implies the desired competitive
Rmin
ratio. O

Corollary 2.12. (Know Rmpmas and Rpin, randomized

lower). For all randomized algorithms, the competitive
. log &maz

ratio is Q) (———zin— ||

log log Hma

Ronin

Proof. The corollary is implied by optimization of the
full knowledge lower bound, theorem 2.17. O

2.5 Knowledge of Ruyiny, Rmaxs, and T

The conjunction of knowledge about the optimal al-
gorithms exploitation value and the number of rounds
yields straightforward results. In essence, we can al-
ways do at least as well as either piece of knowledge
allows us to do individually.

Lemma 2.13. (Randomized and deterministic full
knowledge upper bounds) Given any algorithm A, with
a computable competitive ratio Vi (Rimaz, Rmin) using

R.0e and Ry, and any other algorithm Ar with o
computable competitive ratio Vr(T) using knowledge
of T, there exists an algorithm with competitive ratio
min(Vm(Rmaw7 Rmin); VT (T)) .

Proof. Consider the algorithm which evaluates
argmin(Vi, (Rmax, Rmin), Vo (T)) and then simply uses
the algorithm which achieves the minimum. O

Our lower bounds have essentially the same functional
form as the upper bound. Before stating lower bounds,
we first first show that it is necessary only to consider
“monotonic” algorithms.

Definition 2.14. An algorithm is monotonic if it
never switches from exploiting to exploring.

Lemma 2.15. For all algorithms A there exists a
monotonic algorithm A’ (using T and A) such that for
all sequences of length T, A' achieves greater reward
than A.

Proof. From Lemma 2.1, we know that the algorithm
which does n explorations followed by m exploitations
achieves the largest possible reward amongst all algo-
rithms which do n explorations and m exploitations in
any order. We construct an algorithm A’ which uses
A as an oracle in order to determine the number n
without engaging in any exploitation steps.

The essential technique is simulation. We specify ex-
actly how algorithm A’ acts on some particular se-
quence using algorithm A and T'. Algorithm A’ always
outputs “explore” when algorithm A outputs “explore”
and it simulates a round for algorithm A whenever
algorithm A outputs “exploit”. Algorithm A’ can per-
fectly simulate an “exploit” round for algorithm A be-
cause algorithm A receives no new information when-
ever it exploits. The process of simulation continues
until the number of simulated rounds plus the num-
ber of “explore” actions reaches T. Then, algorithm
A’ outputs “exploit” for all remaining rounds. By con-
struction, algorithm A’ does all “explores” before “ex-
ploits”. Also by construction, algorithm A’ does ex-
actly as many “explores” as algorithm A and so the
total cumulative reward of algorithm A’ is larger than
or equal to the total cumulative reward of algorithm
A. O

Now, we are ready to state the full knowledge lower
bound theorem for deterministic algorithms.

Theorem 2.16. (Know Ry.z, Rmin, and T, deter-
ministic lower bound). No algorithm given only knowl-
edge of Ropaz, Rumin, and T can achieve a competitive

ratio less than min (Jimes ,T).

Proof. Consider all sequences of length T' beginning
with Rnin and ending with 0 to T" exploitation values
of Ryax- These sequences have the form

Rmin .. Rmianax .. Rmax

. There are two classes of deterministic algorithms: (1)
Algorithms which for all sequences exploit at Ryax Or
(2) algorithms for which there exists a sequence and
round ¢t + 1 (dependent on the algorithm) where the
deterministic algorithm exploits a value of Ruyin-

Algorithms in class (1) have an infinite competitive
ratio on the sequence Ry - - - Rmin-

For algorithms in class (2) consider the sequence which
consists of t exploitation values with Ry = Ruin fol-
lowed by T'—t—1 exploitation values of Ry,,x- The de-
terministic algorithm achieves cumulative reward C' =
Rpin (T —t) while the optimal algorithm achieves com-
petitive reward Copy = max(Rmax(T —t — 1), RminT).
This implies a competitive ratio of

Copt — max(Rmax(T—t—l),RminT)
- Rumin(T—t)
For t = T — 1, the competitive ratio is 7', and for
t < T — 1, the competitive ratio is at least ;E:in. O

The full knowledge randomized lower bound is the
most difficult proof we present. It gives intuition for
the innate difficulties in optimizing the explore/exploit
tradeoff.

Theorem 2.17. (Know R4z, Rmin, and T, random-
ized lower bound) Let f(z) = —282% _ All algorithms

~ logylogy @ ”
given only knowledge of Rz, Rmin, and T have a

competitive ratio of | f (min(gzj:,T)) .

Proof. Pick the largest | for which min(% 12T -

in

Iy > 0. We define a set of I exploitation value se-
quences and show that all algorithms (randomized or
deterministic) perform poorly on these sequences. Let
Ry; denote the jth exploitation value of the kth se-
quence. For all i € {1,...,1} let T; = T — I'~%. For all
ke{l1,...,1},and j € {1,...,T} define

Ry; = Ofor all j < T
Rkj = Rminlzz for j satisfying T, <3 <Tiy1 <Ty
Ry = Roinl?* for all j > Ty,

Since the exploitation values do not change between
round T; and round T;41, it is sometimes convenient
to index the exploitation value by R}, = Ry; for all
J€{Ti,Tiya — 1}

Consider the sequence k = I. Every algorithm has
some probability of switching from exploration to ex-
ploitation at each round on this sequence. Fix some
algorithm A and let py; be the probability of switching
from exploration to exploitation after exactly 7 rounds

of exploration on sequence k. Let C). be the total cu-
mulative reward achieved by algorithm A using ran-
dom bits r. Since the exploitation value is the same
for all j € {T},T;+1 — 1}, we know that for all ! se-

quences:
T)
ErCr = Ej:l pijkj(T_J)
l —
< 2z p;m'R;cill ’
T
where p}, = ;:Ti“ Dhj-

Since the kth sequence is indistinguishable from the
lth sequence until round T}41, all algorithms must
have p), = pj; for all i < k. Also, we have p;c(kﬂ) <

! . .
> i—ke1 Pri- Since we have Ry, = Ry, for all i > k, we

get:
ET‘CT
k i g
< iy PRl +Rl;ckll k=t Ei:/zﬂlpﬁi '
= Rmin[Pf/cllJr’c + ARt Dk Pl i P;z’llﬂ]
S Rmin[p;kll+k + ll+k71]

Rmin (p;k + %)ll—i_k

Since), pj; = 1 there exists an i for which pj; <
%. On sequence i, we have an expected reward of at
most E,C, < 2Rminl!T~". On sequence i the optimal
algorithm always chooses to exploit at round ¢ and
receive reward:

Copt = Rminl%(T - Tz) = Rmian_i

Consequently, the competitive ratio is at least % >
L establishing a lower bound of Q(l). To achieve the
theorem, note that f(z)/(®) < z. a

3 Application
3.1 Application to Markov Decision Processes

The model in this paper in which an agent can ei-
ther do pure information gathering or pure exploita-
tion does not quite fit the standard Markov Decision
Process used to formalize the reinforcement learning
setting. We now outline and discuss where specific
aspects do not hold.

The four assumptions implicitly made in defining our
abstract algorithm are:

(1) The value of the exploitation policy (given
the exploration done) is known and a “sub-
algorithm” exists which monotonically in-
creases the exploitation policy with more ex-
ploration.

(2) The sequence of exploitation values is fixed.

(3) Exploration results in zero reward while ex-
ploitation results in zero exploration.

(4) Any information gained through exploitation
does not result in policy improvement.

Assumption 1 does not hold in stochastic policies,
though it might still hold with high probability in some
situations.

Realizing assumption 2 is difficult in a multi-state
world. The potential benefit of exploration in general
depends on the state the agent is in, so the decision
to explore or exploit should be state dependent. How-
ever, if each round of the algorithm represents a game
which ends in some finite time, then the agent might
decide whether it explores or exploits during the course
of each game. The criterion is then to maximize the
cumulative reward in the T' games being played.

The impact of assumption 3 is unclear, in the more
general framework. Exploration in general results in
some reward, otherwise the exploitation policy could
not improve. However, the impact this has on the
current situation is not clear.

The impact of assumption 4 is in general be problem
dependent.

Fully analyzing the exact connections between this ab-
stract analysis and the reinforcement learning is an
open problem and important for practical algorithms.

3.2 Application to computational search
problems

There are many examples of planning and search prob-
lems where the computational difficulty of finding a
good solution is much greater than the computational
difficulty of verifying a good solution. This class of
problems includes the NP-complete problems as well
as others. Many of these problems have known meth-
ods for approximation—in particular it may be pos-
sible to find an approximate solution quickly and the
quality of the solution can be refined with additional
computation. For a discussion of some of these situa-
tions see [7].

When the utility of an approximate solution decreases
with time used to find such a solution, these prob-
lems have an inherent exploration/exploitation trade-
off. A meta-algorithm can either decide to “explore”
(and thus find a better solution) or “exploit” and exe-
cute the solution locking in the value of the solution.
At any round, it is often easy to calculate the opti-
mal “exploitation” value. Furthermore, our assump-
tion that exploitation does not provide exploration is
often satisfied since using an approximate solution of-
ten does not aid in the calculation of a better approx-
imate solution.

4 Conclusion

We analyzed the explore/exploit tradeoff with an ab-
stract model and show that a small amount of extra

information (knowledge of the number of timesteps T
or upper and lower bounds on R,,) can greatly im-
prove the competitive ratio. The lower bounds and
the upper bounds in the analysis are tight up to loglog
factors.

There are two undesirable properties of our analysis
which can be addressed with a refined analysis. Al-
though we show that we can achieve something near
optimal in expectation, the variance on the reward
achieved can be quite large. This problem has cropped
up elsewhere (see [8] for an example) in competitive
analysis and been successfully addressed.

Another undesirable property of our analysis is that
every upper bound is instantiated with an algorithm
that does all exploration before exploitation. An alter-
ation of the model removes this unintuitive result. In
particular, if the algorithm knows the distribution of
ending times, there are examples where it is desirable
to switch from exploitation back to exploration.

Acknowledgments

Thanks to Avrim Blum for many helpful suggestions
and good advice.

References

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. "Gambling in a rigged casino: the adversarial
multi-armed bandit problem", Proc. of the 36th Annual
Symposium on Foundations of Computer Science, 1995.

[2] A. Blum, T. Sandholm, M. Zinkevich. “Online Algo-
rithms for Market Clearing”, Thirteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, 2002

[3] Allan Borodin and Ran El-Yaniv. “Online Computa-
tion and Competitive Analysis”, Cambridge University
Press, 1998.

[4] Michael Duff, “Q-Learning for Bandit Problems”, Pro-
ceedings of Machine Learning 1995.

[5] R. El-Yaniv, A. Fiat, R. M. Karp, and G. Turpin,
“Competitive Analysis of Financial Games”, FOCS92,
pages 327-333.

[6] M. Kearns and S. Singh. "Near-optimal reinforcement
learning in polynomial time", Proc. 15th International
Conf. on Machine Learning, 1998.

[7] K. Larson and T. Sandholm. “Bargaining with limited
computation: Deliberation equilibrium” Artificial In-
telligence 2001, 132(2): 183-217.

[8] Stefano Leonardi, Alberto Marchetti-Spaccamela,
Alessio Presciutti, Adi Ros’en, “On-line Randomized
Call Control Revisited”, SODA (Symposium on Dis-
crete Algorithms) 1998.

[9] S. D. Whitehead, “Complexity and cooperation in Q-
learning”, Proc. 8th International Conf. on Machine
Learning, pages 363-367, 1991

