
An Efficient Optimal-Equilibrium Algorithm
for Two-player Game Trees

Michael L. Littman
Dept. of Computer Science

Rutgers University
Piscataway, NJ 08854

Nishkam Ravi
Dept. of Computer Science

Rutgers University
Piscataway, NJ 08854

Arjun Talwar
Dept. of Mathematics
Stanford University
Stanford, CA 94309

Martin Zinkevich
Dept. of Computing Science

University of Alberta
Edmonton Alberta
Canada T6G 2E8

Abstract

Two-player complete-information game trees
are perhaps the simplest possible setting
for studying general-sum games and the
computational problem of finding equilibria.
These games admit a simple bottom-up al-
gorithm for finding subgame perfect Nash
equilibria efficiently. However, such an al-
gorithm can fail to identify optimal equi-
libria, such as those that maximize social
welfare. The reason is that, counterintu-
itively, probabilistic action choices are some-
times needed to achieve maximum payoffs.
We provide a novel polynomial-time algo-
rithm for this problem that explicitly reasons
about stochastic decisions and demonstrate
its use in an example card game.

1 Introduction

Game-tree search for zero-sum games has been a sta-
ple of AI research since its earliest days. Recently,
research on general-sum games has intensified as a
way of reasoning about more complex agent interac-
tions (Kearns et al. 2001). In this paper, we treat the
problem of finding optimal Nash equilibria in general-
sum two-player game-trees.

1.1 Problem Definition

A game-tree problem, as studied in this paper, is spec-
ified by a tree with n nodes. A leaf node has no chil-
dren, but it does have a payoff vector R(i) ∈ <2. Each
non-leaf node i has an associated player T (i) ∈ {1, 2}
who controls play in that node. Except for the root
node, each node has a parent node P (i) ∈ {1, . . . , n}.
Play begins at the root of the tree. When playing
node i, Player T (i) chooses an action. We define
the set of actions available from node i as A(i) =

{j|P (j) = i}; Player T (i) selects from among the child
nodes of i. When a leaf node i is reached, the play-
ers receive their payoffs in the form of a payoff vector
R(i). Specifically, Player x receives the xth component
of the payoff vector R(i)x.

In the small example in Figure 1, node numbers are
written above the nodes and leaves are marked with
rectangles. Non-leaf nodes contain the player number
for the player who controls that node and leaf nodes
contain their payoff vectors. Here, play begins with a
decision by Player 2 at node 1. Player 2 can choose be-
tween the two children of the root, node 2 and node 3.
If Player 2 selects node 2 as his action, Player 1 gets to
make a choice between node 4 and node 5. If Player 1
chooses the left child, node 4, a leaf is reached. From
node 4, Player 1 receives a payoff of 2 and Player 2
receives a payoff of 3 and the game ends.

2
1

1
2

1000
4

3

2
3

4
2

100

5

Figure 1: A small game tree that demonstrates the
challenge of finding optimal equilibria.

1.2 Equilibria

A joint strategy for a game tree is a selection, at each
node of the game tree, of a probability distribution
over actions. We can write a joint strategy as a func-
tion π that maps each node of the tree to a probability
distribution over its children. Returning to Figure 1,
one joint strategy is π(1)2 = 1/2, π(1)3 = 1/2 (choose
node 2 from node 1 with probability 1/2 and node 3
with probability 1/2), and π(2)5 = 1 (always choose
node 5 from node 2).



The value of a strategy π is the expected payoff vector
if strategy π is followed. It can be defined recursively
as follows. In the context of a strategy π, define V π(i)
to be the value for the game defined by the subtree
rooted at node i. For a leaf node, V π(i) = R(i). Oth-
erwise,

V π(i) =
∑

j∈A(i)

π(i)jV
π(j). (1)

The sum, here, is taken over each component of the
payoff vector separately. Equation 1 just tells us that
once we calculate the values for each child node, we
can find the values of each parent and consequently
the root by working our way up the tree.

The example strategy above has a value of [501, 52]
because, starting from node 2, Player 1 chooses node 5
resulting in payoffs of [2, 100]. Starting from node 1,
Player 2 randomizes over node 2 and node 3, resulting
in the expected payoffs given.

A joint strategy π is a subgame perfect Nash equilib-
rium (Osborne and Rubinstein 1994), or equilibrium
for short, if there is no i such that T (i) can increase
her value V π(i)T (i) at i by changing the strategy π(i)
at i. Specifically, let π be a strategy for a game, and i
be a node of the game tree. We say that strategy π is
locally optimal at node i if

V π(i)T (i) ≥ max
j∈A(j)

V π(j)T (j). (2)

Equation 2 simply states that the player controlling
node i (T (i)) can’t improve her payoff by selecting
some other action choice at node i. Strategy π is an
equilibrium if it is locally optimal at every node.

A subgame at node i of a game tree is the game ob-
tained by retaining only the subtree rooted at node i.
An equilibrium strategy for a game is also an equilib-
rium strategy for all subgames of the game.

Note that the example strategy given above is not an
equilibrium because Player 2 can increase his payoff to
100 by choosing node 2 deterministically from node 1.
The joint strategy πA(1)2 = 1, πA(2)5 = 1, is an equi-
librium, however, as Player 1 cannot improve her value
of 2 by changing her decision at node 2 and Player 2
cannot improve his value of 100 by changing his deci-
sion at node 1.

The definition of an equilibrium can be turned directly
into an algorithm for computing an equilibrium. De-
fine V (i) = R(i) for every leaf node i. For non-leaf
nodes, V (i) = V (j∗) where i = P (j∗) and j∗ ∈ A(i) is
chosen such that V (j∗)T (i) ≥ maxj∈A(j) V (j)T (i). In
words, V (i) is the value vector of the child of node i
that has the largest payoff for the player controlling
node i (T (i)). Such a player is happy with its choice

at that node since no other choice will improve its ex-
pected payoff.

Given the V function, the corresponding equilibrium
strategy is π(i)j = 1 where j ∈ A(j) and V (j) = V (i);
at each node, the strategy chooses the child whose
value vector matches that of the node. The anyNash

algorithm returns this strategy, π.

By construction, the strategy produced by anyNash sat-
isfies the conditions for being an equilibrium expressed
in Equation 2. Specifically, at each node i the strategy
chooses a child node that results in the best possible
(local) outcome for the player who controls node i.

1.3 Optimal Equilibria

Some games, like the example game in Figure 1, have
multiple equilibria. The situation arises initially when
a player has a choice of actions that results in identical
payoffs for that player. In fact, if anyNash does not
encounter any ties as it proceeds up the game tree, it
finds the unique equilibrium.

When there is a choice of equilibria, anyNash chooses
one arbitrarily. However, some equilibria are more de-
sirable than others. We use the term optimal equilib-
rium to refer to an equilibrium that is the most desir-
able among the possible equilibria.

There are many possible kinds of desirable equilibria
and we focus on four representative types here. If Vx

is the value to Player x for playing the equilibrium, we
can seek the equilibrium that is the:

1. social optimum; maximize the sum of values
over all players:

∑
x Vx.

2. fairest; maximize the minimum payoff: minx Vx.

3. single maximum; maximize the maximum pay-
off over all players: maxx Vx.

4. best for y; maximize the payoff to some specific
Player y: Vy.

Greenwald and Hall (2003) refer to these concepts as
utilitarian, egalitarian, republican, and libertarian, re-
spectively. They are also explicitly treated by Conitzer
and Sandholm (2003) in the bimatrix setting.

The previous section described an equilibrium πA for
the example game with a value of [2, 100]. A second
equilibrium is πB(1)3 = 1 and πB(2)4 = 1. The value
of this equilibrium is [1000, 4]. Equilibrium B is the so-
cial optimum (1004 > 102), the fairest (4 > 2), the sin-
gle maximum (1000 > 100), and the best for Player 1
(1000 > 2). Equilibrium A, however, is the best for
Player 2 (100 > 4).



Note that this game has an infinitely large set of equi-
libria. In particular, consider a strategy π such that
π(1)2 = 1, π(2)4 = α, and π(2)5 = 1− α (for 0 ≤ α ≤
1). Since T (2) = 1 and Player 1 is indifferent to the
outcomes at the children of node 2, the subgame rooted
at node 2 is an equilibrium, regardless of the value of α.
For the strategy to be an equilibrium game at node 1,
however, it must be the case that V π(2)2 ≥ V π(3)2.
Since node 3 is a leaf, V π(3)2 = R(3)2 = 4. By Equa-
tion 1, V π(2)2 = αV π(4)2 +(1−α)V π(5)2 = α3+(1−
α)100 = −97α+100. We have V π(2)2 ≥ V π(3)2 when
−97α + 100 ≥ 4 or when 0 ≤ α ≤ 96/97. Any such
value of α leads to a distinct equilibrium strategy.

Later, we show that such stochastic equilibria play a
key role in the search for optimal equilibria.

1.4 Challenges

When ties are encountered in anyNash, a naive ap-
proach to finding an optimal equilibrium is to break
ties in favor of the optimal (local) outcome. We note
that this approach does not generally produce opti-
mal equilibria. As a concrete example, consider trying
to find the social optimum in the example game from
Figure 1.

anyNash begins with node 2 (the lowest non-leaf node),
which Player 1 controls. It is immediately faced
with the choice of two actions with equal payoffs for
Player 1. Since we seek the social optimum, a natural
choice for node 2 is node 5 (total payoffs 102 > 5).
However, now Player 2 is faced with the choice at
node 1 of a payoff of 100 for itself or a payoff of 4
for itself. To produce an equilibrium, Player 2 must
choose node 2 in this situation, resulting in a total
value of 102.

Player 1’s selection of node 5 prevented the computa-
tion from arriving at the actual social optimum equi-
librium, specifically Equilibrium πB. This equilibrium
would have arisen only from Player 1 selecting node 4.
We conclude that an algorithm that wishes to com-
pute the social optimum cannot work by simply se-
lecting actions bottom up—the right choice depends
on decisions made elsewhere in the tree. Our algo-
rithm handles this issue by keeping all equilibria as it
works its way up the tree.

1.5 Related Models

We briefly relate the problem we address in this paper
to others attacked in the literature.

First, a more general game tree can also have stochas-
tic nodes that result in a transition to a child node
according to a given set of probabilities. A game with-
out stochastic nodes can be called deterministic. Such

nodes bridge the gap to richer models such as stochas-
tic games (Shapley 1953, Condon 1992).

A general game tree can also include information sets.
An information set is a set of nodes controlled by
the same player that the player cannot distinguish be-
tween. Therefore, the player is constrained to choose
the same action or probability distribution over ac-
tions at every node in an information set. A game
tree without information sets can be called a complete-
information game.

A game is called zero sum if it has two players and,
for each leaf node i, R(i)1 + R(i)2 = 0. Other games
can be called general sum.

Another natural extension is to consider games with
more than 2 players.

Equilibria in zero-sum game trees with stochastic
nodes and information sets can be found in polynomial
time using a linear-programming-based algorithm due
to Koller et al. (1996).

General-sum game trees with information sets include
bimatrix games as a special case; the root of the tree is
the first player’s action, the level below is the second
player’s action, and all nodes at the second level are in
the same information set. It is well known that finding
optimal equilibria in these games is NP-hard (Gilboa
and Zemel 1989, Conitzer and Sandholm 2003). It
was also recently shown that finding any equilibria in
these games is PPAD-hard (Chen and Deng 2005) and
is therefore presumed intractable.

A single arbitrary equilibrium can be found in general-
sum complete-information game trees with stochastic
nodes in polynomial time using a variation of the any-

Nash algorithm described above. We have shown that
finding optimal equilibria, for example social-optimal
equilibria, is NP-hard; see the following section.

The problem of finding optimal equilibria in general-
sum deterministic complete-information game trees,
we show in this paper to be efficiently solvable. Huang
and Sycara (2003) referred to this class of games
as complete-information extensive games (CEGs) and
they developed a learning algorithm based on anyNash.
This bottom-up approach cannot find optimal equilib-
ria for game trees requiring stochastic actions, such as
the example we describe in Section 2.

Our efficient algorithm is specific to two-player games.
The problem of finding optimal equilibria in general-
sum deterministic complete-information game trees
with three or more players is currently an open prob-
lem. Figure 2 summarizes the known complexity re-
sults for finding equilibria in game trees.



NP−hard

general sum

complete information

PPAD−hard

optimalany

information set

any optimal

P

zero sum

P

deterministic
stochastic

NP−hard

Popen

3+ players 2 players

Figure 2: A summary of complexity results for game
trees. The heavy boxes are contributions of the current
paper.

1.6 NP-hardness of game trees with
stochastic nodes

Space precludes a formal proof, but we quickly sketch
the result.

The knapsack problem: There is a given knap-
sack (Garey and Johnson 1979) of some capacity c > 0
and a finite list of n objects, that is, pairs (wi, vi) where
wi represents the weight of the object and vi the value.
Find the selection of items (δ(i) = 1 if selected, else 0)
such that

∑n
i=1 δ(i)wi ≤ c and

∑n
i=1 δ(i)vi is maxi-

mized.

Given a knapsack instance, we construct the following
game. Player 1 first decides to commence the game or
abort in which case the payoffs are −c

nM for Player 1,
for large enough M such that the utility of Player 1
is not significant in determining the socially optimal
equilibrium, and a very large sum for Player 2. If the
game commences, Player 2 is sent to a node of the
game tree representing one of the n objects at random
(with equal probability), and chooses whether to quit
with [0, 0] or pass to Player 1 who decides if this object
goes in the knapsack or not. Both these actions cost
Player 1 −wi

M . However, if Player 1 assigns an object
to the knapsack, Player 2 earns vi, and zero otherwise
(see Figure 3).

In this game, the subgames initiated by Player 2 for

2
1

1
2

0
0

3

−wi

M
0

4
−wi

M
vi

5

Figure 3: The subgame representing an object with
weight wi and value vi. Any equilibrium where Player
2 gets a strictly positive utility, Player 1 gets a utility
of −wi

M .

each object have values [0, 0] and [−wi

M , vi] as outcomes
of their local equilibria. There are several other equi-
libria as well, but we see that the others cannot im-
prove these payoffs for any player. That is, these are
the pareto-dominant equilibria. This property will
allow us to equate pareto-dominant equilibria of the
whole game to the 2n assignments of the knapsack.
Consequently, because of the initial move of the game,
the socially optimal solution to the game is equiva-
lent to a knapsack solution. So, a polynomial solution
to the stochastic game-tree problem could be used to
solve the NP-hard knapsack problem; it is also NP-
hard.

2 The Optimal-Equilibrium
Algorithm

The fundamental concept behind our algorithm is that
of the utility profile set or UPS. The utility profile set
for the subgame at node i is

U(i) = {V π(i)|π is an equilibrium strategy},
the set of possible equilibrium payoffs for the two play-
ers. We show that these sets can be represented and
manipulated efficiently.

Without loss of generality, we can assume that the
game tree is binary: that for each non-leaf node i, there
are two children, left(i) and right(i).1 Our algorithm,
bestNash, for finding optimal equilibria involves first
finding the utility profile sets for all subgames.

Algorithm 1 gives the high-level structure of the tech-
nique. It computes the UPSs for the children of i,

1If in the true tree there are more than two children (say,
m children) for a non-leaf node i, then i can be replaced
with m− 1 internal nodes j1 . . . jm−1 with the same player
in control as i, where the first node j1 gives a choice of
taking the first action or going to the second node, the
second node j2 is a choice of taking the second action or
going to the third node j3, and so forth, until the last node
is a choice between the last two actions.



Algorithm 1 getEquilibriumUPS(Node i)
if isLeaf(i) then

return {R(i)}
end if
SL ← getEquilibriumUPS(left(i))
SR ← getEquilibriumUPS(right(i))
return merge(SL, SR, T (i))

1
1

2
2

1
3

2
4

1
5

2
5

6

3
1

7

1
0

8

0
2

9

3
1

10
3
3

11

Figure 4: A game where the social optimum equilib-
rium involves randomness. The square to the right of
each node is its UPS.

then combines the results using “merge” to produce
the UPS for i. Before specifying merge algorithmi-
cally, we specify it mathematically:

merge(SL, SR, x) = mergeRandom(SL, SR, x) ∪
mergeLDet(SL, SR, x) ∪mergeLDet(SR, SL, x),

mergeRandom(SL, SR, x) = (3)
{λs + (1 − λ)t : λ ∈ [0, 1], s ∈ SL, t ∈ SR, sx = tx},

mergeLDet(SL, SR, x) = {s : s ∈ SL, sx ≥ min
t∈SR

tx}.

In words, mergeLDet takes the UPS for one child and
keeps only the payoffs that are an improvement for
Player x over any payoff in the UPS of the second
child. That is, to be an equilbrium payoff, the control-
ling player must do no less well than the (worst) alter-
native. However, if Player x has a choice between two
equal payoffs, any stochastic combination of the two
choices is locally optimal. So, mergeRandom returns
any payoff that can be achieved as a convex combi-
nation of two payoff vectors for which the controlling
player is indifferent. Finally, merge returns any payoff
vector that be attained by an equilibrium that deter-
ministically chooses the left child, the right child, or
stochastically combines the two.

Consider the behavior of anyNash on the game illus-
tated in Figure 4. From node 5, Player 1 is indifferent
and can choose either node 10 or node 11; we consider
these two possibilities in turn. If she chooses node 10,
the leftward action is preferred by the players at nodes
4, 3, and 2. Ultimately, Player 1 chooses node 2 at
node 1, resulting in a payoff vector of [3, 1].

On the other hand, if Player 1 chooses node 11 at
node 5, a different cascade takes place. The rightward
action is preferred by the players at nodes 4, 3, 2, and
1, resulting in a payoff vector of [3, 3].

On the other hand, if Player 1 randomizes uniformly
between nodes 10 and 11 at node 5, π(5)10 = π(5)11 =
1/2, then V π(5) = (3, 2). Then, if Player 2 ran-
domizes uniformly between nodes 9 and 5 at node 4,
π(4)5 = π(4)9 = 1/2, then V π(4) = (1.5, 2). The
choices at the remaining nodes are deterministic and
result in an overall payoff vector of [5, 2]. This pay-
off vector has a higher social welfare than either of
the two purely deterministic equilibria, indicating that
stochastic action choices must be taken into consider-
ation when searching for optimal equilibria.

Thus, the these complex UPSs appear needed to find
optimal equilibria. We next explain how to opera-
tionalize the mathematical definition given in Equa-
tion 4. The key to a practical implementation of merge
is that we can a priori specify a finite number of re-
gions (based on the payoffs at the leaves), which we
refer to as a basis, such that any UPS can be rep-
resented as a union of some collection of these ba-
sis sets. Suppose that O = {R(i)|i is a leaf} is the
set of payoffs. Define U1 = {u1

1 . . . u1
n1
} such that

u1
1 < u1

2 < . . . < u1
n1

and U1 = {u1(o)}o∈O to be
the list of all n1 possible payoffs for Player 1. De-
fine U2 = {u2

1 . . . u2
n2
}, u2, and n2 analogously for

Player 2. These sets can be constructed in O(n log n)
time, where n is the number of leaf nodes in the tree.
Define Nk = {1 . . . k} as the set of numbers from 1 to
k, for short. Given U1 and U2, define the set of points,
lines, and axis-aligned rectangles in the grid defined by
U1 and U2 as follows: 2

Pi,j = {(u1
i , u

2
j)} ∀i ∈ Nn1 , j ∈ Nn2 , (4)

L1
i,j = [u1

i , u
1
i+1]× {u2

j} ∀i ∈ Nn1−1, j ∈ Nn2 , (5)

L2
i,j = {u1

i } × [u2
j , u

2
j+1] ∀i ∈ Nn1 , j ∈ Nn2−1, (6)

Di,j = [u1
i , u

1
i+1]× [u2

j , u
2
j+1]∀i ∈ Nn1−1, j ∈ Nn2−1,

(7)

B = {Pi,j} ∪ {L1
i,j} ∪ {L2

i,j} ∪ {Di,j}. (8)

Definition 1 A set S is simply representable if
there exists a collection B′ ⊆ B such that S = ∪B∈B′B.

2Observe that Pi,j , Pi,j+1 ⊆ L2
i,j , Pi,j , Pi+1,j ⊆ L1

i,j ,

and L1
i,j , L

1
i,j+1, L

2
i,j , L

2
i,j+1 ∈ Di,j .



Given a simply representable set S, we represent it in
the machine by four two-dimensional Boolean arrays,
S.P [ ][ ],S.L1[ ][ ],S.L2[ ][ ], and S.D[ ][ ],
such that:

S =
⋃

x∈S.P

Px ∪
⋃

x∈S.L1

L1
x ∪

⋃

x∈S.L2

L2
x ∪

⋃

x∈S.D

Dx,

(9)

where the union is over all index pairs for
which the two-dimensional array stores the value
“true”. We prove inductively that the output of
getEquilibriumUPS is simply representable. As a base
case, for any leaf o, {(u1(o), u2(o))} = Pi,j for some i
and some j. Now, for internal nodes, we need to prove
that the output of the merge function, given two sim-
ply representable sets, outputs a simply representable
set.

Lemma 2 If B, B′ ∈ B, then:

1. mergeLDet(B, B′, i) is simply representable.

2. mergeRandom(B, B′, i) is simply representable.

This result can be proven by simple iteration over the
various cases.

Lemma 3 If B1,B2 ⊆ B, SL = ∪B∈B1B and SR =
∪B∈B2 (that is, they are simply representable), then
merge(SL, SR, i) is simply representable.

This result follows from the distributive property of
merge over union, and the fact that the union of two
simply representable sets is simply representable.

Thus, we have established that the sets in which we
are interested are simply representable. Further, the
number of entries in the data structure for representing
the set is Θ(n1n2) = O(n2).

Applying the distributive property directly to merge
simply representable sets is somewhat inefficient, as
it takes Ω((n1n2)2) time. We can show how it
can be done in O(n1n2) time. Algorithm 2 and
Algorithm 3 are O(n1n2) algorithms for computing
mergeLDet(·, ·, 1) and mergeRandom(·, ·, 1), respec-
tively at a node for Player 1. Since union can be
performed in O(n1n2) time as well, a merge can be
performed in O(n1n2) time. Given U1 and U2 (which
take O(n log n) time to construct), one need only per-
form n merges (one for each node in the game tree),
and therefore the overall runtime is O(nn1n2), which
is O(n3), but can be substantially less if the payoffs
comes from a small set of possibilities.

To make the merge operation more accessible, let’s
consider a concrete example. Figure 5 gives exam-
ple UPSs for SL and SR. The mergeLDet sets show

SL SR

mergeLDet(SL, SR, 2) mergeLDet(SR, SL, 2)

mergeRandom(SL, SR, 2)

merge(SL, SR, 2)

Figure 5: Illustration of the sets generated in the steps
of merging two example UPSs.

Algorithm 2 mergeLDetP1(UPS SL, UPS SR)

m← min{i : ∃j s.t. SR.P [i][j]}
X ← ∅
for i = m to n1 do

for j = 1 to n2 do
X.P [i][j]← SL.P [i][j]
if i 6= n1 then

X.L1[i][j]← SL.L1[i][j]
end if
if j 6= n2 then

X.L2[i][j]← SL.L2[i][j]
end if
if i 6= n1 and j 6= n2 then

X.D[i][j]← SL.D[i][j]
end if

end for
end for

the two sets after truncating each one based on the
smallest value obtainable in the other subtree. The
mergeRandom set comes from “filling in” the points
that are obtainable as convex combinations of values
for Player 1 when Player 2’s values are tied between
the two subtrees. Finally, merge is the result of union-
ing the mergeRandom and mergeLDet sets.

Once the UPS is computed recursively for the root of
the game tree, bestNash selects the optimal payoff at
the root. For all four notions of optimality considered
in this paper, this calculation can be carried out sim-
ply by checking the upper-right corner of each of the
rectangular regions in the UPS. Other notions of op-
timality, like maximizing the product of the payoffs of
the two players, can also be computed efficiently from
the resulting data structure.



Algorithm 3 mergeRandomP1(UPS SL, UPS SR)
X ← ∅
for i = 1 to n1 do

if ∃j s.t. SL.P [i][j] and ∃k s.t. SR.P [i][k] then
low← min{j : SL.P [i][j] or SR.P [i][j]}
high← max{j : SL.P [i][j] or SR.P [i][j]}
for j = low to high do

X.P [i][j]← true
if j 6= high then

X.L2[i][j]← true
end if

end for
end if

end for
for i = 1 to n1 − 1 do

if∃j s.t. SL.L1[i][j] and ∃k s.t. SR.L1[i][k] then
low← min{j : SL.L1[i][j] or SR.L1[i][j]}
high← max{j : SL.L1[i][j] or SR.L1[i][j]}
for j = low to high do

X.L1[i][j]← true
if j 6= high then

X.D[i][j]← true
end if

end for
end if

end for
return X

Once the optimal payoff is identified, bestNash can pro-
ceed recursively top down to create the correspond-
ing equilibrium strategy by choosing the strategy at
each node (either a deterministic or stochastic choice
as needed) that attains the target value.

3 Experimental Results

In this section, we compare the result of applying any-

Nash to that of bestNash in a game tree derived from a
realistic card game.

3.1 Rules of the Game

“Oh Hell!” is card game in the Spades family played
with closed-handed bidding.3 Thus, representing the
game tree for this game requires information sets.

Since this paper is focused on games of complete in-
formation, we modified the rules of the game to cre-
ate the open-handed variant described below. Note
that solutions to complete-information games can be
used to guide decision making in imperfect information
games (Sturtevant 2004), so this simplification may be

3See, for example, http://en.wikipedia.org/wiki/Oh Hell
for rules and other information.

of practical interest in computer games.

Open-Handed Oh Hell! (OHOH) is played with one
standard pack of cards and from 2 to 7 players. On
each hand, every player is dealt the same number of
cards, with the number ranging from 1 to 7. Players
can see each other’s cards in this variant. Before the
game begins, a trump suit is randomly chosen. Each
player declares the number of rounds she thinks she
can win; this declaration is called the contract. The
contracts are declared in a round-robin fashion. A con-
tract can range from zero to the number of cards dealt
to a player. The contract of the player who declares
last is constrained so that the sum of the contracts of
the players does not equal the number of cards dealt—
someone will not be able to make her contract.

To win, a player has to meet her contract. That is,
the number of rounds won by a player should be the
same as her contract. If a player manages to meet
her contract, her payoff is 10 plus the value of the
contract. If she deviates from the contract, her payoff
is −10 minus the value of the contract.

A round is played in the following manner: Players
play one card each by moving it to the center in a
round-robin fashion. The one who goes first is called
the Button and has the freedom to play any card. The
others have to play a card of the same suit, unless they
don’t have one. If all the cards are of the same suit,
the one with the highest value is the winning card.
Deuce (2) is the lowest in value and ace is the highest.

If all the cards are not of the same suit, and there
is one or more trump cards in the center, the highest
trump card is the winning card. If there are no trump
cards in the center, and the cards are of different suits,
the card that has the color of the Button’s card and is
highest in value is the winning card. The player with
the winning card wins the round, and is designated the
Button for the next round.

3.2 Empirical Results

We present experimental results on the 2-player, 4-
card and 5-card versions of OHOH. We randomly gen-
erated 1000 hands. For each hand, we ran anyNash and
bestNash.

For each hand we solved, we compared the value of the
equilibrium found by anyNash to the one found by best-

Nash for several notions of optimality. We computed
the fraction of times anyNash did not find optimal equi-
librium. The results, along with other attributes of the
games, are summarized in Table 1.

These results show that, even in this simple card game,
multiple equilibria abound. Therefore, if we want to
find optimal equilibria, we should not rely on anyNash



4-card 5-card
tree depth 10 12
tree size (n) ≈ 10, 000 ≈ 400, 000
distinct payoffs (n1, n2) 6 7
anyNash running time 137 ms 2 sec
bestNash running time 605 ms 11 sec
multiple equilibria 30% 52%
social optimum 22.0% 41.5%
fairest 3.2% 4.0%
single maximum 21.6% 39.2%
best for Player 1 20.8% 37.6%
best for Player 2 9.4% 17.1%

Table 1: Properties of the OHOH game trees and the
fraction of the time bestNash found a better equilibrium
than anyNash.

to find them. Although the expense of running best-

Nash is polynomial, for a large game tree, its worse
case running time is substantial (cubic in the number
of leaves, where anyNash is linear). However, this ex-
ample shows that, in practice, the additional expense
of running bestNash can be close (within a factor of 6)
to that of anyNash.

Taken together, these results show that bestNash is a
viable procedure for searching general-sum game trees.

Another empirical question is whether or not reason-
ing about action probabilities is critical to finding opti-
mal equilibria. Using the same hands from the exper-
iments above, we implemented a simplified algorithm
that finds the optimal deterministic equilibrium. This
algorithm tended to run about twice as fast as best-

Nash and half as fast as anyNash. For all 1000 hands, it
found the same fairest, single maximum, best for P1,
and best for P2 equilibria. However, in 7.6% of the
hands for the 4-card game (11.8% for the 5-card game),
the deterministic social optimum was worse than that
found by bestNash. So, in fact, the probabilistic rea-
soning did come into play in this natural card game.

4 Conclusion

We studied general-sum two-player complete-
information game trees and found that it is possible
to find optimal equilbria in polynomial time. As
shown by a simple example, we discovered that com-
puting optimal equilibria requires reasoning about
probabilistic strategies. Our proposed algorithm
builds utility profile sets for each node of the game
tree from the bottom up and uses the set at the root,
which compactly represents all equilibria, to select
an optimal equilibrium of any of several types. An
open problem is whether an efficient algorithm exists
for 3-or-more player games or for other equilibrium

concepts such as perfect equilibria or subgame-perfect
equilbria that are all socially optimal.

We implemented the new algorithm on a modifica-
tion of a popular card game and found that, indeed,
multiple equilibria are common. Our algorithm was
frequently able to find improvements over arbitrarily
chosen equilibria and a significant fraction of games
required the use of probabilistic reasoning to identify
the equilibrium that maximized the total payoffs to
the two players.

Acknowledgments

We thank our anonymous reviewers, Nathan Sturte-
vant, and the support of NSF ITR IIS-0325281, NSF
Research Experience for Undergraduates, and the Al-
berta Ingenuity Centre for Machine Learning.

References

Xi Chen and Xiaotie Deng. Settling the complexity of
2-player Nash-equilibrium. Electronic Colloquium on
Computational Complexity Report TR05-140, 2005.

Anne Condon. The complexity of stochastic games. Infor-
mation and Computation, 96(2):203–224, February 1992.

Vincent Conitzer and Tuomas Sandholm. Complexity re-
sults about Nash equilibria. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence
(IJCAI-03), pages 765–771, 2003.

Michael R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
completeness. Freeman, San Francisco, CA, 1979.

I. Gilboa and E. Zemel. Nash and correlated equilibria:
some complexity considerations. Games and Economic
Behavior, 1:80–93, 1989.

Amy Greenwald and Keith Hall. Correlated-Q learning. In
Proceedings of the Twentieth International Conference
on Machine Learning, pages 242–249, 2003.

Pu Huang and Katia Sycara. Multi-agent learning in ex-
tensive games with complete information. In Proceed-
ings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-
03), pages 701–708, 2003.

Michael Kearns, Michael L. Littman, and Satinder Singh.
Graphical models for game theory. In Proceedings of the
17th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 253–260, 2001.

Daphne Koller, Nimrod Megiddo, and Bernhard von Sten-
gel. Efficient computation of equilibria for extensive two-
person games. Games and Economic Behavior, 14(2):
247–259, 1996.

Martin J. Osborne and Ariel Rubinstein. A Course in
Game Theory. The MIT Press, 1994.

L.S. Shapley. Stochastic games. Proceedings of the National
Academy of Sciences of the United States of America, 39:
1095–1100, 1953.

Nathan Sturtevant. Current challenges in multi-player
game search. In Computers and Games, pages 285–300,
2004.


