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ABSTRACT

Preference elicitation — the process of asking queries to de-
termine parties’ preferences — is a key part of many prob-
lems in electronic commerce. For example, a shopping agent
needs to know a user’s preferences in order to correctly act
on her behalf, and preference elicitation can help an auc-
tioneer in a combinatorial auction determine how to best
allocate a given set of items to a given set of bidders. Un-
fortunately, in the worst case, preference elicitation can re-
quire an exponential number of queries even to determine
an approximately optimal allocation. In this paper we study
natural special cases of preferences for which elicitation can
be done in polynomial time via value queries. The cases
we consider all have the property that the preferences (or
approximations to them) can be described in a polynomial
number of bits, but the issue here is whether they can be
elicited using the natural (limited) language of value queries.
We make a connection to computational learning theory
where the similar problem of exact learning with member-
ship queries has a long history. In particular, we consider
preferences that can be written as read-once formulas over
a set of gates motivated by a shopping application, as well
as a class of preferences we call Toolbox DNF, motivated by
a type of combinatorial auction. We show that in each case,
preference elicitation can be done in polynomial time. We
also consider the computational problem of allocating items
given the parties’ preferences, and show that in certain cases
it can be done in polynomial time and in other cases it is
NP-complete. Given two bidders with Toolbox-DNF pref-
erences, we show that allocation can be solved via network
flow. If parties have read-once formula preferences, then al-
location is NP-hard even with just two bidders, but if one of
the two parties is additive (e.g., a shopping agent purchas-
ing items individually and then bundling them to give to the
user), the allocation problem is solvable in polynomial time.
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1. INTRODUCTION

In most auctions where multiple (say, n) distinct items
are being sold, a bidder’s valuation for the items is not ad-
ditive. Rather, the bidder’s preferences generally exhibit
complementarity (a bundle of items is worth more than the
sum of its parts—e.g., a flight to Hawaii and a hotel room in
Hawaii) and substitutability (a bundle is worth less than the
sum of its parts—e.g., a flight to Hawaii and a flight to the
Bahamas on the same day). Combinatorial auctions, where
agents can submit bids on bundles of items, are economically
efficient auction mechanisms for this setting. The computa-
tional problem of determining the winners, given the bids,
is a hard optimization problem that has recently received
significant research attention.

An equally important problem, which has received less
attention, is that of obtaining enough preference informa-
tion from the bidders so that there is a basis for allocating
the items (usually the objective is to maximize the sum of
the bidders’ valuation functions). There are 2" — 1 bundles,
and each agent may need to bid on all of them to fully ex-
press its preferences. This can be undesirable because there
are exponentially many bundles to evaluate, and further-
more determining one’s valuation for any given bundle can
be computationally or cognitively expensive. So in prac-
tice, when the number of items for sale is even moderate,
the bidders will not bid on all bundles. Instead, they may
wastefully bid on bundles that they will not win, and they
may suffer reduced economic efficiency by failing to bid on
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elicits the bidders’ preferences by querying them (based on
the preference information elicited so far) [6, 8, 7]. In the
worst case, an exponential amount of communication is re-



quired to allocate the items even approximately optimally,
if the bidders can have general preferences [10]. (This holds
even when bidders can dispose of extra items for free, that
is, their valuation functions are monotone.) However, ex-
perimentally, preference elicitation appears to help quite a
bit [9]. Nonetheless, the amount of querying can be pro-
hibitively large when the bidders have general (monotone)
preferences.!

An analogous issue arises with shopping agents. Consider
the following scenario. Alice goes to her software agent and
asks it to help her purchase a vacation. In order to act on her
behalf, the agent first needs to find out Alice’s preferences
(how much is a trip to Hawaii worth compared to a trip to
the Bahamas, does it substantially increase the value to her
if she can get some entertainment booked in advance, etc.).
Then, after scouring the Internet, the agent needs to solve
the computational problem of deciding on the best vacation
package—the one that maximizes Alice’s valuation minus
the cost of the trip. In this scenario, there is no auctioneer.
Rather, the elicitor is the buyer’s helper. Again, the amount
of querying can be prohibitively large when the buyer has
general (monotone) preferences.

In this paper we study natural classes of preferences that
we show can be elicited in polynomial time with value queries,
and yet are rich enough to express complementarity and
substitutability. We consider a setting in which there is a
universe of n items, and a user has different valuations over
different subsets of these items. The auctioneer (or software
agent) can get information about these preferences using
value queries: proposing a bundle and asking the user for
her valuation of that bundle. This is the same as the notion
of a membership query in computational learning theory.

The restrictions that we place on the preferences will im-
ply that the preferences can be compactly represented. This
means that preference elicitation would be easy if the elici-
tor was allowed to ask “give me a computer program for (an
approximation to) your preferences”. But, in practice, a hu-
man will not be able to express her preferences by uttering a
formula that completely captures them. Value queries are a
standard and much more natural communication protocol.

We begin by arguing that read-once formulas over a cer-
tain set of gates (defined below) can express many natural
preference functions. We then show that if the user’s prefer-
ences can be expressed as a read-once formula of this form,
then preference elicitation can be done in polynomial time
using value queries (this builds upon work of Angluin et
al. [2] and Bshouty et al. [4, 5] for learning over classes of
gates motivated from learning theory).

More precisely, we assume the bidder’s preferences can
be described as a read-once formula over {0,1}" (an input
x € {0,1}" corresponds to the bundle containing the items
¢ such that z; = 1) using gates {SUM, MAX, ALL}, with
real-valued multipliers on the inputs. A read-once formula
is a function that can be represented as a tree (“read-once”
means that even the initial inputs may only have out-degree
1).2 A SUM node sums the values of its inputs; a MAX node

! Ascending combinatorial auctions [3, 11, 12] can be viewed
as a special case of the preference elicitation framework
where the queries are of the form: “Given these prices on
items (and possibly also on bundles), which bundle would
you prefer the most?”.

2The reason for so much work on read-once formulas is that
Angluin [1] shows that reconstructing read-twice functions

takes the maximum value of its inputs; an ALL node sums
its inputs unless one of the inputs is zero, in which case the
output is 0. For convenience, we will sometimes view inputs
as z € {0,1}" and sometimes as © C {1,...,n}. Each input
i also has a positive real-valued multiplier v; (representing
the intrinsic value of that item). For example, a legal func-
tion on 3 inputs might be ALL(2z1, MAX (1022, 4x3)), which
gives value 12 to the input 110, 6 to the input 101, and 0 to
the input 011.

Read-once formulas of this type allow for many natural
preferences. For example, suppose items are flights and ho-
tel rooms in different locations (e.g., input x; ;0 represents
the ith flight to location j, and «; j,1 represents the ith hotel
room in location j) and we want to take just one trip. Then
for each location j we could compute ALL(MAX{v; ;0%:,5,0}4,
MAX{v; j1%ij1}:), and then at the root of the tree we
would take a MAX over the different destinations.?

We then generalize our results by considering a broader
class of gates. Let MAXj output the sum of the k high-
est inputs, and ATLEAST} output the sum of its inputs if
there are at least k positive inputs, and 0 otherwise. Finally,
we consider GENERALy ;, a parameterized gate capable of
representing all the above types of gates. We show that read-
once preferences including all of these gates can be elicited
in a polynomial number of queries. We also give positive
results for the setting where preferences are approzimately
read-once formulas with MAX and SUM gates.

In addition to the elicitation problem, we study the com-
putational allocation problem of determining how the items
should be divided among agents with read-once preferences.
We show that once the preference function f is known, the
problem of finding the subset of items x that maximizes
f(z) — g(x), where g is a linear cost function (or equiva-
lently, maximizing f(z) + g({1,...,n} — z), where g is a
linear valuation function), can be done in polynomial time.
This is natural for the case of a shopping agent that buys
items individually on the web for a user with valuation func-
tion f. However, if g is a general read-once formula, then
we show this optimization is NP-complete.

Finally, we consider the class of preferences that can be
expressed as monotone polynomials. E.g., f(z) = azix2 +
broxsxs + cxaxa. We call this class Toolbox DNF because
it captures settings where each agent has a set of tasks to
accomplish (one per term in the polynomial), each task re-
quiring a specific set of tools (the variables in the term) and
each having its own value (the coefficient on that term). For
example, the tools may be medical patents, and producing
each medicine requires a specific set of patents. The value
of a set of items to the agent is the sum of the values of the
tasks that the agent can accomplish with those items. We
show that Toolbox DNF preferences can be elicited in a poly-
nomial number of value queries, and that given two agents
with Toolbox DNF preferences, the items can be optimally
allocated in polynomial time using network flow.

More broadly, in the combinatorial auctions literature, the

from membership (value) queries alone can require an expo-
nential number of queries, even if the function is simply an
OR of ANDs (a monotone DNF).

3Notice that the multiplicative values at the leaves may not
be uniquely specified: if there is only one flight and one
hotel in a particular destination, and their combined value is
$1000, then this can be arbitrarily split into values v, 1000—v
for the flight and hotel in the formula.



issue of preference elicitation is often put as “we know the
problem is easy if preferences are linear, and hard if prefer-
ences are arbitrary. What if preferences are somewhat lin-
ear?” Our answer is that if one defines “somewhat linear” as
read-once (with certain types of gates) or as Toolbox DNF,
then preference elicitation with value queries is easy, while
still allowing preferences that exhibit interesting behavior.

2. ELICITING READ-ONCE FORMULAS
CONTAINING SUM, MAX, AND ALL OP-
ERATORS USING VALUE QUERIES

Let us define a read-once formula to be canonical if no in-
ternal node in the tree has a child with the same label. It is
not hard to see that for the node functions {SUM, MAX, ALL}
we can assume without loss of generality that the formula
is canonical. In particular, for these gates, if a node and its
child are of the same type we can just merge them. We be-
gin, as a warmup, with the easier problem of eliciting when
there are no ALL gates.

LEMMA 1. One can elicit read-once formulas over
{SUM, MAX} using O(n?) value queries.

ProoF. Let S ={1,...
tions:

,n}. We will ask two sets of ques-

1. For every a € S, what is f({a})? This is n questions.

2. For every pair a,b € S what is f({a,b})? Thisis n(n—
1)/2 questions.

Notice that an item a € S is in the tree if and only if
f({a}) > 0. Let us call the set of items in the tree T.
Second, notice that if the least common ancestor (LCA)
of two inputs @ and b is a SUM node, then f({a,b}) =
f({a}) + f({b}), whereas if the LCA is a MAX node, then
f{a,b}) = MAX(f({a}), f({b})). We can therefore use the
answers to our queries to construct a graph G with the ver-
tices representing the items in 7', and an edge between two
vertices if their least common ancestor is a MAX gate.

We now determine the structure of the tree root-down.
Notice that if the root node of the formula is a SUM gate,
then there will be no edges in G between any two vertices
in different subtrees of the root and the graph will be dis-
connected. On the other hand, if the root node is a MAX
gate, then every item in the first subtree will be connected
to every item in the other subtrees. Since there are at least
two subtrees, this means that if the root is a MAX, then the
graph is connected.

So, if the graph is disconnected, we place a SUM gate at
the root, partition the items into subtrees according to the
connected components of the graph, and then recursively
solve to discover the structure of each subtree. Formally, we
are using the fact that if f; is the ith subtree and S; are the
items in subtree f;, then for any S’ C S;, f(S') = fi(S").
On the other hand, if the graph is connected, we place a
MAX gate at the root, partition the items into subtrees
according to the connected components of the complement
of the graph, and then recursively solve for the subtrees.
Here we are using the fact that in the complement of the
graph, there is an edge between two nodes if and only if the
lowest common ancestor is a SUM node, so we can use the
same argument as before.

Finally, we set the leaf multipliers v; to the values given
by the n unary queries asked in step 1. [J

We now proceed to our first main theorem.

THEOREM 1. One can elicit read-once formulas over
{SUM,MAX, ALL} gates using O(n?) value queries.

The high-level outline of the proof is as follows. First,
notice that if one thinks of a value greater than zero as being
true and a value equal to zero being false, then MAX and
SUM act as OR, and ALL acts as AND. We can now apply
an algorithm of Angluin et al. [2] that exactly learns (elicits)
read-once formulas of AND and OR gates using membership
(value) queries to determine the AND/OR structure. Next
we expand each OR gate back into a tree of MAX and SUM
using the algorithm of Lemma 1. One complication is that
to apply that technique here we need to deal with two issues:
(1) we only get to observe the output of the full tree, not the
specific subtree, and (2) we can only directly manipulate the
inputs to the full tree, not the inputs to the specific subtree.
Finally, we need to find a consistent set of value multipliers
for the inputs.

DEFINITION 1. Given a read-once formula f consisting of
SUM, MAX, and ALL gates, we define the Boolean image
of [ to be the function g where for all sets of items S, g(S)
is true if and only if f(S) > 0.

As noted above, the Boolean image of a read-once for-
mula f over {SUM, MAX, ALL} is equivalent to a read-once
monotone Boolean formula with an AND gate wherever f
has an ALL gate, and an OR gate wherever f has a MAX
or SUM gate. This direct mapping may produce a non-
canonical tree (because of a SUM node beneath a MAX
node, for instance). The canonical Boolean image is the
tree in which all subtrees of OR nodes have been merged
together.

DEFINITION 2. Given a canonical real-valued read-once
formula f and its canonical Boolean image g, define bool(u)
for a node u in f to be its associated node in g. For a given
node v in g, let r(v) be the highest node in bool™*(v) (the
one closest to the root of f).

THEOREM 2 (ANGLUIN ET AL. [2]). There is an algo-
rithm that exactly identifies any monotone read-once for-
mula over {OR, AND} using O(n?) queries.

We can use Theorem 2 to elicit the canonical Boolean im-
age of f, but we now need to expand each OR node back
into a subtree of {MAX, SUM}. The next two lemmas show
us how to do this. Observe that the only test required to
determine the structure of a {MAX, SUM} tree is a test of
equality of value between two sets. Lemma 2 will describe
how to perform such a test when the function one is inter-
ested in is not the root. Lemma 3 shows how to treat the
inputs to this OR node like items to elicit the label of their
least common ancestor.

LEMMA 2. Suppose one has g, the canonical Boolean im-
age of f, and v is a node of g. Let w=r(v). Then, for two
sets of items Sq and Sy, one can determine if u(Sa) = u(Sp)
in two queries.

PROOF. Suppose that S’ is the set of items that are de-
scendents of v, and Z = S — S’ is all other items. With-
out loss of generality, we can assume S,,S, C S’. No-
tice that it is possible f(S.) = f(S») but u(S.) # u(Ss)



if v has an ancestor labelled AND. It is also possible that
F(SaUZ) = f(Sy U Z) but u(Sa) # u(Ss) if u had a MAX
gate as a parent.

Thus, we construct a set R that is the items x € Z such
that the LCA of v and z is an AND node. This is identical
to the set of all items in Z that have an ALL node as a
LCA with u. This means that for every ALL node that is
an ancestor of wu, its children that are not ancestors of u
have positive output. Also, for every MAX node that is an
ancestor of wu, its children that are not ancestors of u have
zero value. Thus, if ¢ is the sum of the values of the children
of the ancestors of v on input R, then u(S.)+c= f(S.|JR)
or u(Sa) = f(SaUR) =0. Thus, u(Ss) = u(Ss) if and only
if (S, UR) = f(S,UR). O

LEMMA 3. Suppose one has g, the canonical Boolean im-
age of f, and suppose vi and v2 are siblings in g with an OR
parent. Then one can determine whether the LCA of r(v1)
and r(v2) is a MAX or SUM in four queries.

PROOF. Let vs be the parent of v1 and vz, and let u; =
r(vi). Observe that no node on the path between u; and
uz is an ALL gate, and no node on the path between us
and wuz is an ALL gate. Also, the LCA of u; and us is a
descendent of uz. Suppose that S; is the set of items that are
descendants of of v;. The LCA of u; and u2 is a MAX node
if and only if u3(S1J S2) = u3(S1) or us(S1J S2) = us(S2).
Using Lemma 2, this can be tested using four queries.* [J

LEMMA 4. Suppose one has g, the canonical Boolean im-
age of f, and an internal node v in g with k children. Then,
one can determine the subtree corresponding to
bool ™} (v) in 2k(k — 1) queries, and how the leaves of that
subtree map to the children of v.

Proor. If v is an AND gate, then bool™*(v) is an ALL
gate. So, we simply construct one ALL gate with children
that are leaves labelled with the children of v.

If v is an OR gate, define u = r(v). Define vy, ..., v to be
the children of v, and define u; = r(v;). Using Lemma 3, we
can determine whether the LCA of each pair u;, u; is a MAX
or SUM in 4 queries for a total of 4k(k — 1)/2 = 2k(k — 1)
queries. We can now apply the graph decomposition tech-
nique from the proof of Lemma 1 to compute the whole
subtree. [

LEMMA 5. Given the structure of a read-once formula f
over {MAX, SUM, ALL}, one can determine a consistent set
of values (multipliers) on the leaves using at most 3n value
queries, where n is the number of items.

The proof is in Appendix A.

Proof (of Theorem 1): The overall algorithm works as
follows. Apply the algorithm from [2] to get the Boolean
image of g. Use Lemma 4 to find the fine structure of f.
Observe that overall all of the internal nodes have n total
children, so the total number of queries is less than 2n(n—1).
Then use Lemma 5 to find the weights. [

3. ELICITING READ-ONCE PREFEREN-
CES THAT CONTAIN MORE GENERAL
OPERATORS

4In reality, one can use less than four queries per test.

We can also elicit preferences with more general gates
that we call ATLEAST;, MAXj, and GENERAL,,;. An
ATLEAST) node returns the sum of its inputs if it receives
a positive value on at least k inputs. Otherwise, it returns
zero. This is a generalization of the ALL node. A MAXj
node returns the sum of the k£ highest-valued inputs. A
GENERALy,; gate returns the sum of the [ highest-valued
inputs if and only if at least k inputs are positive, otherwise
it returns zero. We restrict k£ to be less than or equal to
. Every read-once gate discussed in this paper is a specific
instance of a GENERAL ; gate.

For instance, imagine that on a vacation to the Bahamas,
Alice wanted entertainment. If she got to go out on at least
three nights, then the trip would be worthwhile. Other-
wise, she would rather stay home. Each night, she takes the
maximum valued entertainment option. Then there is an
ATLEAST3 node combining all of the different nights.

In a different situation, imagine that Joe wants a more
relaxing vacation in Hawaii, where he does not want to go
out more than three nights. In this case, a MAXj3 gate
will be useful. For each night, he chooses the best possible
entertainment given to him. Then, he takes the best three
nights of entertainment.

Finally, imagine that Maggie wants a moderately active
vacation, and is interested in going to Paris for a week, and
wants at least three but no more than four nights of en-
tertainment. Then a GENERAL3 4 gate will describe her
preferences.

THEOREM 3. A read-once GENERALy; function can be
learned in polynomial time.

The proof sketch is in Appendix C.

4. ALLOCATION WITH READ-ONCE
PREFERENCES

Suppose we have two parties with preference functions
f and g and we want to maximize social welfare, that is,
find the allocation (A, S — A) that maximizes f(A) + g(S —
A). In this section we show that if one of these functions
(say, g) is additive (that is, the value of a bundle is the
sum of the values of the items in the bundle) and the other
(say, f) is read-once, then we can find the optimal allocation
in polynomial time. However, if both f and g are read-
once formulas—even containing just ALL, MAX, and SUM
gates—then the allocation problem is NP-hard.

Another way to think of maximizing social welfare when
g is linear is to think of g as a “cost” function, and we are
maximizing f(A) — g(A). For example, we are a software
agent and want to find the set of items A that maximizes
the difference between the value of A to our user and the
cost of A, when items are each purchased separately.

4.1 Read-once valuation function and additive
valuation function

THEOREM 4. Given one party with a known MAX-SUM-
ALL read-once valuation, and another party with a known
additive valuation, there exists a polynomial-time algorithm
for mazximizing their joint welfare.

PrOOF. The idea is that we recursively learn two things
about each node u of f: what subset S’ of the items that



are descendents of u maximizes u(S’) — g(S’), and what
subset S” of the items that are descendents of u maximizes
u(S") — g(9") given the restriction that u is positive.

Observe that this is trivial if » is a leaf. If not, assume
that wi,...,ur are the children of u, and that S; are the
items that are descendents of u;. Define S; C S; to be the
items that maximize u;(S;) — g(S}), and S; C S; to be the
items that maximize wu;(S;') — g(S;') given that u;(S;) is
positive.

If u has an ALL label, then 8" = (J¥_ S/, If u(S") —
g(S") > 0, then S’ = S”. Otherwise, S’ = (). This justifies
the need for maintaining both sets.

If u has a SUM label, then S’ = (J¥_, Si. Define j to be
the index of the child of u that loses the least from being
positive. More formally,

9(S) — (wi(S{") — g(S7)) .

Then we find that 5" = 7 U (U,; 57 )

If u has a max label, then define a to be the index of the
best S;, or more formally a = argmax;c ;3 u(S;) — g(S7).
Then S’ = S. Define b to be the index of the best S/,
or more formally b = argmax;c ;. xyu(Si’) — g(S{). Then
S" =5y

Each of these sets can be found in polynomial time, so the
runtime is polynomial. []

J=argming gy (ui(Si) -

THEOREM 5. Given one party with a known GENERALy ;
read-once valuation, and another party with a known addi-
tive valuation, there exists a polynomial-time algorithm for
mazimizing their joint welfare.

The proof is similar to that above and is deferred to the
full version of the paper.

4.2 tI_\IP-hardness of allocation among two par-
ies

THEOREM 6. Given two agents with known valuations
which are MAX-SUM-ALL read-once functions, it is NP-
hard to find an allocation whose welfare is more than % of
the welfare of the optimal allocation.

The proof is in Appendix D.

Notice that achieving welfare of at least half the optimal
is easy because we can simply give all the items to the agent
who values the total the most. This shows that it is NP-hard
to do any better.

5. LEARNING PREFERENCES THAT ARE
ALMOST READ-ONCE

In this section, we will consider the setting where a per-
son’s valuation function is a -approximation of a read-once
function: given that the person’s valuation function is f,
there exists a read-once function f’ such that for all sets S,
we have |f(S) — f'(S)| < 6. This algorithm works only for
the case of read-once formulas over {MAX, SUM}.

THEOREM 7. Given black-box access to f, a d-approximation

of a read-once function consisting of MAX and SUM nodes,
a function g can be learned in n(n — 1)/2 queries such that
for any set of items S’, we have |g(S") — f(S")] < 65]S’|+ 4.

PRrROOF. Define f’ to be the read-once function such that
|f = f| <6, and let v, = f'({a}). The key behind this
algorithm is that we will throw away all items a where v, <
49, because they will interfere with our LCA test. In order
to achieve this, we throw away a if f({a}) < 55. Observe
that if v, > 60, then a will not be thrown away.

We now argue that our test for LCA is correct if all the
items a have a value v, > 49 or more. Consider the following
test for the LCA of a and b: a and b have a max node as
an LCA if and only if f({a,b}) < f({a})+2d or f({a,b}) <
f({b}) +26.

Assume that the LCA is a max node. Then f'({a,b}) =
f'({a}) or f'({a,b}) = f'({b}). Without loss of generality,
assume that f'({a,b}) = f'({a}). Then:

f{ab}) < f({a,b})+0
f{a,0}) < f'({a})+9
f{a,b}) < (f{a}) +6)+0
f{a,b}) < f({a})+26

Assume that the LCA is a SUM node. Then f'({a,b}) =
f'{a})+f ({b}) > f'({a})+46. This implies that f({a,b}) >
f({a}) + 26. Similarly, f({a,b}) > f({b}) + 26.

Given this LCA test, we can learn the structure of the tree
as in Lemma 1. We associate the value f({a}) to the leaf
with item a, even though this value might be off by almost
J. Now, observe that if we throw away items not in S’, then
this does not affect the difference between f’(S’) and g(S’).
Also, incorrectly calculating the value of an item not in S’
does not affect this difference. Now, for each item in S’, we
can get an error at most less than 6§, because we threw out
an item of value just below 6. Also, there is a difference of
less than § between f’ and f. O

6. TOOLBOX DNF

We now consider another natural class of preferences that
we call Toolbox DNF, that can be elicited in polynomial
time via value queries. In Toolbox DNF, each bidder has an
explicit list of m bundles Si,..., S, called minterms, with
values v1, ..., vm respectively. The value given to a generic
set S is assumed to be the sum of values of the S; contained
in S’. That is,

Z V.

s;C8’

v(S) =

These preferences are natural if, for example, the items are
tools or capabilities and there are m tasks to perform that
each require some subset of tools. If task ¢ has value v; and
requires set of tools S;, then these preferences represent the
value that can be attained by any given collection of tools.
We show that Toolbox-DNF can be elicited in time polyno-
mial in the number of items and the number of minterms.

THEOREM 8. Toolbox DNF can be elicited using O(mn)
value queries.

Proor. We will find the minterms one at a time in an
iterative fashion. We can clearly test for the presence of
some minterm by simply testing if v(S) > 0. We can then
repeatedly remove elements to find a minimal positive set
S1 in n queries. That is, v(S1) > 0 but for all x € Sy,
v(S1 — {z}) = 0. This will be our first minterm, and we set
v = v(51).



At a generic point in time, we will have found minterms
S1,...,S; with associated values v1,...,v;. Let v' be the
Toolbox-DNF given by the terms found so far; that is,

v'(S) = Z vj.

§;C8:j<i

Define o* = v—v’. Observe that 7° is also a toolbox function,
namely, v*(S’) = Zsjgs/:j>i v;. Also, we can “query” 7" at

any set S’ by querying v(S’) and subtracting v*(S’). Thus,
we can find a minterm of &' using the same procedure as
above, and by our observation, this will be a new minterm
of v. We simply continue this process until at some point
we find that ™(S) = 0 and we are done. [

THEOREM 9. Given two players with Toolbox-DNF pref-
erences having mi1 and mo minterms respectively, optimal
allocation can be done in time polynomial in n and mi+me.

ProoFr. Construct a node-weighted bipartite graph with
one node on the left for each of the first player’s minterms,
and one node on the right for each of the second player’s
minterms. Give node ¢ a weight v; (where v; is defined with
respect to the associated player). An edge is drawn between
a node on the left and a node on the right if the associated
minterms share any items.

Notice that any independent set I on this graph represents
a legal allocation. The first player gets all items in minterms
associated with nodes in I on the left, and the second player
gets all items in minterms associated with nodes in I on
the right. This is legal because that if an item is in a node
on the left and a node on the right, then there is an edge
between these nodes, and only one of them would be in I.
If remaining items are thrown away, then the total welfare
of this allocation is equal to the total weight of independent
set 1.

Similarly, any legal allocation corresponds to an indepen-
dent set of the same total weight. If the allocation gives set
A; to player 1, and As to player 2, then just pick the nodes
on the left whose bundles are in A1, and the nodes on the
right whose bundles are in As.

Thus, the allocation problem reduces to finding a maxi-
mum weight independent set in a bipartite graph, which can
be solved via maximum flow. Specifically, it is a standard
result that the complement of I, which is a minimum-weight
vertex cover, corresponds directly to the minimum cut in an
associated flow-network. []

7. CONCLUSIONS AND FUTURE WORK

Elicitation of real-valued preferences is a key capability
in many allocation problems, especially in electronic com-
merce. When multiple items are to be allocated, preference
elicitation is difficult because the parties’ preferences over
items are generally not additive due to complementarity and
substitutability. In this paper we studied the elicitation of
real-valued preferences over subsets of items, showing that
read-once preferences over a natural set of gates (a restric-
tion that is still powerful enough to capture complemen-
tarity and substitutability), and toolbox DNF preferences,
can be elicited in a polynomial number of value queries.
Such elicitation can be used by a shopping agent to elicit
its user’s preferences. It can also be used to elicit bidders’
preferences in a combinatorial auction (answering the value
queries truthfully can be made an ex post equilibrium by

using Clarke pricing [6]—assuming the agent has read-once
preferences). We also showed that if the party’s preferences
are close to read-once, then a good approximation of the
preferences can be elicited quickly.

We also studied the complexity of the computational prob-
lem of allocating the items given the parties’ preferences.
We showed that this is N P-hard even with just two parties
with read-once valuations. However, in the natural setting
where only one of the parties has a read-once valuation and
the other has an additive valuation function, the allocation
problem is solvable in polynomial time.

There are several interesting avenues for future research
along these lines. For one, in these multi-item allocation
problems, what is the limit on the generality of preferences
that can be elicited in polynomial time via value queries?
Second, when there are multiple parties, one agent’s prefer-
ences can be used to decide what information needs to be
elicited from another party in order to determine an opti-
mal (or approximately optimal) allocation of items. This
has been the driving motivation in the work on preference
elicitation in combinatorial auctions [6, 8, 7, 9], but our work
in this paper did not yet capitalize on this extra power. In
the future, it would be interesting to harness this power,
together with the possibilities that preference restrictions
open, to design effective goal-driven preference elicitation
algorithms.
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APPENDIX
A. LEARNING THE WEIGHTS

There are some situations where there are multiple consis-
tent values for the leaves of the function f. For example, if a
plane ticket and hotel are fed into an ALL gate, and together
they are worth $1000, then any pair of values (z, 1000 — x)
are consistent for the leaves. Our algorithm will guarantee
to learn some consistent set of values.

We will use a recursive technique to learn the tree. At
each node, we will either learn the function f’ at that node,
or a function f” such that there exists some ¢ € R such that
for all 8", if f'(S"”) > 0 then f'(S”) = f”(S”)+c, otherwise
F"(S") = 0. We call such an f” a shift of function f’, even
though the shift is only on the inputs where f’ > 0. In the
case that we learn a shift f”/, the function that we learn will
be “shiftable” in the sense that it will be easy to make an
additive increase or decrease of the value of the function on
all positive inputs by recursively shifting the values of the
subfunctions. This will be done as a postprocessing step.
An example of a function that is not shiftable is a SUM
node with two leaves as children.

For easier recursive application, we will in fact allow leaves
to have positive and negative values, and find a function
where each node not only computes a real value but also
a true or false value. So, now leaves will return ¢true and
their associated real value if the item is in the input, false
and zero otherwise. SUM nodes will return the OR of the
boolean values of their children and the sum of their real
values. MAX nodes will return the OR of their children
and the highest real value of a true child if this is true,

otherwise zero. This means that if one child has a negative
real value and is true, and one child has a zero real value
and is false, MAX will return the negative value. ALL will
return the AND of its children and the sum of its children’s
real values. The result of the tree is the real value returned
by the root if the root is true, zero if it is false. Observe
that this computation is identical to the original if the values
of the leaves are all positive.

DEFINITION 3. We define a node to be shiftable using a
recursive definition:

1. A leaf is shiftable.
2. A SUM node is never shiftable.

3. A MAX node is shiftable if all of its children are
shiftable.

4. An ALL node is shiftable if at least one of its children
is shiftable.

We define a tree to be shiftable if its root is shiftable, and a
function to be shiftable if the representative tree is shiftable.

LEMMA 6. Suppose that f is a read-once function that is
shiftable. We can construct a new read-once function f’ such
that f' = f + c for all inputs where f returns a true value.

Proor. We perform this construction recursively, only
modifying the values of the leaves. For a leaf node, it is
sufficient to add c to its value. This is the base case.

If the tree is not a leaf, the read-once function has a MAX
or ALL label at the root. Then the root cannot be a SUM
node.

Assume the root is a MAX node. In this case, we know
that the value of the tree, if it is true, will be the value of one
of the subfunctions fi, ..., fx. Observe that all subfunctions
are shiftable. Thus, by the inductive hypothesis, we can
change each subfunction such that f; = f; + c.

Assume the root is an ALL node. In this case, we know
that the value of the tree, if it is true, will be the value of the
sum of the subfunctions fi,..., fix. Now, there must exist
some subfunction f; that is shiftable. Therefore, we change
the value of this subfunction such that f; = f; +c, and leave
the remaining subfunctions unchanged. [

LEMMA 7. Given the structure of a read-once function f
and a node N, suppose that f’ is the true function associated
with N. One can determine values for the leaves that are
descendants of N such that the resulting function f is a
shift of f', using at most (3/2)n queries, where n is the
number of nodes that are descendants of N. If f' is not
shiftable, then we guarantee that f"” = f'.

PrOOF. We prove this inductively on the depth of the
tree. This holds for a leaf. Now let us consider trees of larger
depth. Define S’ to be the items that are descendants of N.
We begin by showing we can construct a set R similar to
that of Lemma 2. Define R to be the set of all items that
have an ALL gate as a LCA with N and are not descendants
of N.

Thus, in an argument similar to Lemma 2, there exists a
c € R such that for all S” C S’, f(S"UR) = f'(S") +ec.

Now, define Ni,..., Nx to be the children of N. Define
f! to be the function associated with each N;, and S; to be
the items that are descendants of IV;. Recursively for each
subtree, we can discover a f; such that there exists a ¢; € R



where for all S, f;(S) = f{(S)+ c;. In order to obtain these
functions, we required (3/2)(n — k) queries.

Suppose that N has a MAX label. Then if one of the sub-
trees, say i, is not shiftable, then f;(S;) = fi(S:) = f'(S:),
so fi(Si) + ¢ = f(SiUR). Thus, with one query we can
discover c. Then, for each subtree f; that is shiftable, we
can find c;. It is true that fj(S;) + ¢ = f(S; U R), and so
i = fi(8;) — £;(S;) = £;(S;) = (f(S; UR) — c). Thus, we
can find a function equal to f; when N; is true by finding

7/ = fj — ¢;. This requires overall less than or equal to k
queries.

However, if N has a MAX label and all the subtrees are
shiftable, then the tree is shiftable. However, we can still
construct a set of functions f;’ such that for all ¢, for all
S"” C S’ such that N; is true, f{'(S"”) = f{(S”) + c¢. This
can be done by defining ¢; = f;(S;) — f(S:JR), and then

i = [i—ci. Observe that ;' = fi — (fi = (fi +¢)) = fi +¢
when the input makes N; true.

Suppose that N has an ALL label. Then we directly make
f" = ALLY_, f/. N is true if and only if all N; are true, and
in this case >~ f7 = 2, (fiter) = (20, f)+(25, ).
Thus, if all of the subtrees of N; are not shiftable, then
f// — f/.

The most complex case is when N has a SUM label. In
this case, we can learn the value of each subtree exactly. We
measure f(S1JS2UR), f(S1UR), and f(S2|JR). Ob-

serve that

fS USSR - f(S2|UR) = F(SiUS2) — F(S2)
= fi(S1).

If kK > 2, then for each ¢ > 2 we measure f(S1S:JR).

Thus, for each 1 < ¢ < k such that the ith subtree is

shiftable, we can calculate ¢; = fi(S;) — fi{(S;), and con-

struct f;' = fi — ;. This requires at most k + 1 < 3k/2
queries. [

Proof (of Lemma 5): One can elicit values such that there

exists a ¢ such that if the root is true, f/(S’) = f(S') + ¢
using (3/2)(m — 1) queries, where m is the number of nodes
in the tree (which can be no more than twice the number of
items). If f is not shiftable, we are done. If f is shiftable,
one can use a single query on the set of all items S to find
c= f'(S) — f(S). Then one can compute f' —c. [

B. LEARNING A MAX; TREE

Before we begin, we assume the tree is canonical, that no
MAX; node v has a MAX; child v/, because the children
of v' can be made children of v. Also, no node is labeled
MAXj, because such nodes and their descendants can be
removed from the tree without affecting the output.

We begin with a large number of definitions, grouped for
ease of reference. S’,S” are sets of items and v, v are nodes.

e Define r to be the root node.

e Define T'={a € S: f(a) > 0}.

e Define L(v) to be [ if v is labeled MAX;.
e Define C(v) to be the children of v.

e Define D(

e Define DP(v) = {D(v') : v' € C(v)}.

e Define C(v,S") = {v' : v € C(v), D(v')NS" £ 0}

v) to be the items that are descendants of v.

e A set S’ is dependent if there exists some a € S’ such
that f(S") = f(S"\{a}).
e A set is independent if it is not dependent.

e Aset S’ is aminimal dependent set if it is dependent
and there exists no dependent proper subset S C S’.

e A set S’ is pairwise independent if no subset of S’
of size 2 is dependent.

e A node v is a witness for a set S’ if L(v) < |C(v,S")].
e Aset S’ represents v if L(v)+1 = |S'| = |C(v, S")|+1.

e Given a graph G which has the items in 7" as nodes, G is
legal if for all a, b € T that are connected, LC'A(a, b) #
T,

e Given a graph G of T, define R(G) to be the collection
of sets such that for each set S’ € R(G), S’ contains
exactly one item from each connected component in G.

We will attempt to find DP(r) and L(r) using a poly-

nomial number of value queries®. We will do this by con-
structing a legal graph and then adding edges to it. The
intermediate outcome of the algorithm depends on L(r):

e L(r) = 1: we will quickly find that L(r) = 1 and be
able to use an applicable trick.

e L(r) = |C(r)]: DP(r) will be the connected compo-
nents of the graph.

e 1 < L(r) < C(r). We will eventually find a set S’ that
represents r, and use it to find DP(r).

We will not need to know L(r) in advance, we will find it in
the course of the algorithm. Before we begin the algorithm,
we will prove some lemmas about witnesses, representatives,
and dependent sets.

Fact 1. 1. A set S’ is dependent if and only if it has
a witness.

2. If S’ is dependent and S" C S”, then S” is dependent.

3. If S’ is independent and S’ O S”, then S” is indepen-
dent.

4. A minimal dependent set S’ represents some node v.

5. A set S' that represents some node v is a minimal de-
pendent set.

6. A set {a,b} C T is dependent if and only if
L(LCA(a,b)) =1.

7. The subset of a pairwise independent set is pairwise
independent.

8. If S’ is pairwise independent, then it has no witnesses
v where L(v) = 1.

LEMMA 8. We can determine if L(r) = 1. If L(r) = 1,
we can find DP(r). If L(r) > 1, we can find a legal graph
G such that for all S’ € R(G), S’ is pairwise independent.

Proor. We construct a graph with nodes in 7', connect-
ing two items {a, b} if and only if they are a dependent set.
By an argument similar to that of Lemma 1, if G is con-
nected, then the root is a MAX; node. In this case, the
connected components of the complement of G is DP(r),
and L(r) = 1.

°In the remaining discussion, we will just use the phrases
“we can” or “one can” to indicate one can find some set,
partition, or value with a polynomial numbe of value queries.



If G is not connected, then the root is not a MAX; node.
Thus, L(r) > 1. For all edges (a,b) in the graph G,
L(LCA(a,b)) =1, and therefore LC'A(a,b) # r.

Now, consider an arbitrary S’ € R(G). If {a,b} C &',
then there is no edge between a and b. Thus, {a, b} is inde-
pendent, and S’ is pairwise independent. [J

Now we will be constructing more legal graphs by adding
edges.

Fact 2. If all S' € R(G) are pairwise independent, and
G’ has all of the edges of G, then all S' € R(G) are pairwise
independent.

Now, we proceed to the primary reason that dependent
sets are useful.

FAacT 3. Given a set S”, one can find a minimal depen-
dent set S" such that S’ C S”.

LEMMA 9. Given a pairwise independent set S” a mini-
mal dependent set S’ C S” that represents some unknown
node v, and an element a € S”, one can determine if a €
D(v). Specifically, a € D(v) if and only if there exists some
be S such that S'\{b} U {a} is dependent.

COROLLARY 1. One can find D(v)NS”.

COROLLARY 2. Given a legal graph G, a pairwise inde-
pendent set S” € R(G), and a minimal dependent set S’ C
S”, one can find if S’ represents r.

PROOF. If a € D(v), then either:

e For all b € S', LCA(a,b) = v. Then for all b € 5,
(S\{b}) U {a} represents v and is dependent.

e There exists some b € S’ where LC' A(a,b) # v. In this
case, (S\{b}) U {a} represents v and is dependent.

If a ¢ D(v), then take an arbitrary b € S, and define
S = S§"\{b}. We will prove that S U {a} does not have a
witness.

First, observe that L(v) = |C(v,8")] — 1 = |C(v,S8"")| =
|C(v, S U{a})|. Observe that S is independent. For all
v # v, C(v',8") < 1. Thus, C(v',S""U{a}) < 2. However,
since $”" U {a} C S” is pairwise independent, it has no
witness where L(v') = 1, so it cannot have any witness. []

LEMMA 10. Given a pairwise independent set S”, a min-
imal dependent set S C 8", an element a € D(v)N(S"\S"),
an element b € S, then LC A(a,b) # v if and only if
(S"\{b})n{a} is dependent and for allc € S’\{b}, (S"\{c})N
{a} is independent.

COROLLARY 3. Given a legal graph G, a pairwise inde-
pendent set S” € R(G), and a minimal dependent set S’ C
S" that represents v, one can find DP(v).

The proof is similar to that above.

LEMMA 11. We can learn MAX; tree using a polynomial
number of value queries.
The algorithm is as follows:

1. Begin with a legal graph G such that all S’ € R(G) are
pairwise independent.

2. Choose an S” € R(G).

3. If " is independent, then L(r) = |C(r)|, and the com-
ponents of the graph G are DP(r).

4. If S” is dependent, then find a minimal dependent set
s’ c 8.

5. If S’ represents the root, then L(r) = |S’| — 1, and one
can find DP(r).

6. If S’ does not represent the root, then for all pairs
a,b € S, add an edge (a,b) in G. Continue from step
2.

This algorithm will terminate because |S’| > 1, and there-
fore we are always adding edges to the graph.

C. PROOF SKETCH FOR GENERALy j,
PREFERENCES

Observe that for the boolean image of a GENERAL
node is a THRES H node, a node that is true if at least k
inputs are true, and false otherwise. So, the boolean im-
age of a read-once GENERALy,; function is a read-once
THRESHj), function. An algorithm to learn such functions
is discussed in [4]. Like learning a {SUM, MAX, ALL} func-
tion, when we are learning a GENERALj ; function, we can
begin by learning the boolean image.

THRESH; nodes represent one or many GENERAL; ;
nodes, just like OR nodes can represent one or many MAX
or SUM nodes. Also, THRFESH), nodes, when k > 1, rep-
resents exactly one GENERALy ; node for some | > k.

We can calculate the output of a specific node to within
an additive factor, by forming a set like in Lemma 2. Using
equality tests, one can learn the MAX; structure correspond-
ing to a THRESH; node. Thus, with an equality test, we
can learn the structure of the original function.

As before, the weights can be computed in polynomial
time. We will recursively learn a function for each node
that may be off by a fixed constant value on sets where
the original function is positive. Again, we can think about
shifting subfunctions as necessary. We define the concept of
a shiftable node recursively.

1. A leaf is shiftable.

2. Suppose an internal node is labeled GENERAL, ; and
has m children.

(a) If k =1 < m and all the children are shiftable, the
node is shiftable.

(b) If k = [ = m and there is a shiftable child, the node
is shiftable.

(c) Otherwise, the node is not shiftable.

The tree is learned recursively from the bottom. One can
learn a shiftable tree within a constant factor on all positive
inputs and a tree that is not shiftable exactly.

We can recursively learn the function for each node, per-
haps being off by a constant value on the positive values.
As before, if a node is not shiftable, we can learn the func-
tion exactly. If k& < [, then it is analogous to a SUM gate.
If Kk = 1 = m, then it is analogous to the ALL gate. If
k =1 < m, then it is loosely analogous to the MAX gate.
This is the hardest case where we solve a simple system of
linear equalities in order to determine how to much to shift
each subfunction.



D. PROVING APPROXIMATE
NP-HARDNESS

Suppose we begin with a SAT instance, which we will
translate into an instance of this problem. The maximum
global welfare will be 2 if the instance is satisfiable, and
1 otherwise. Thus, in order to get more than 1/2 of the
optimal welfare, we must solve an NP-complete problem.
Let {C1,...Ck} denote the clauses of the given formula,
and let X = {z1,...,z,} denote the variables.

The plan is that Agent I’s valuation will be 1 if the alloca-
tion represents an assignment to the variables and 0 other-
wise. Agent II’s valuation can be equal to 1 if the allocation
represents a satisfying assignment, and will be 0 if it does
not represent a satisfying assignment. If the allocation does
not represent an assignment, the value is between zero and
1 inclusive.

A variable x; will be represented by two sets of items:
P, ={pi,...,p¥} and N; = {n},...,n¥}. If Agent I has all
the items in set N;, then x; is “positive”. If Agent I has all
the items in set P;, then the variable is “negative”. If every
variable is either positive or negative, then the allocation is
called “legal”. The function:

fi = MAX (ALL?le{, ALLE_ n? )
is k if x; is positive or negative, zero otherwise. Agent I's
valuation is:

v = L ALLL S,
nk

Observe that v; = 1 if each variable is positive or negative,
and vy = 0 otherwise.

Now, we will use the set D; to represent the clause Cj.
D; is defined as follows: p] is in D; if and only if 2; occurs
positively in Cj. nZ is in Dj if and only if x; occurs nega-
tively in C;. So, given that the allocation is legal, observe
that:

max a

a€D;
is 1 only if there is a variable occurring positively in j which
is not negative according to the allocation, or a variable
occurring negatively in j which is not positive according to
the allocation. Also, this function is never more than 1. The
valuation of Agent II is:

- %ALL?ZlMAX{a .ac D).

This function is never greater than 1. If the allocation is
legal but does not correspond to a satisfying assignment,
the value is zero.

Suppose that there is a satisfying assignment. Then for
each variable z;, if it is positive give all p] to Agent II and
all nf to Agent I, and if it is negative give all nf to Agent II
and all pg to Agent I. This allocation has a value 2.

Thus, if the assignment is not legal, the first agent has
value 0 and the total value is less than or equal to 1. If
the assignment is legal but not a satisfying assignment, the
total value is 1. The optimal global welfare is 2 if there is a
satisfying assignment, and 1 otherwise.



